Documentation

Seymour.Results.EasyDirection

inductive Matroid.IsGood {α : Type u_1} [DecidableEq α] :
Matroid αProp

Given matroid can be constructed from graphic matroids & cographics matroids & R10 using 1-sums & 2-sums & 3-sums.

Instances For
    theorem Matroid.IsGood.isRegular {α : Type u_1} [DecidableEq α] {M : Matroid α} (hM : M.IsGood) :

    Corollary of the easy direction of the Seymour's theorem.

    theorem Matroid.IsGood.isBinary {α : Type u_1} [DecidableEq α] {M : Matroid α} (hM : M.IsGood) :
    ∃ (X : Set α) (Y : Set α) (A : Matrix (↑X) (↑Y) Z2), A.toMatroid = M

    Every good matroid is binary.