Documentation

Seymour.Matroid.Sum2

Matroid 2-sum #

Here we study the 2-sum of matroids (starting with the 2-sum of matrices).

Shorthands for convenience #

All declarations in this section are private.

Definition #

def matrixSum2 {R : Type u_1} [Semiring R] {Xₗ : Type u_2} {Yₗ : Type u_3} {Xᵣ : Type u_4} {Yᵣ : Type u_5} (Aₗ : Matrix Xₗ Yₗ R) (r : YₗR) (Aᵣ : Matrix Xᵣ Yᵣ R) (c : XᵣR) :
Matrix (Xₗ Xᵣ) (Yₗ Yᵣ) R

Matrix-level 2-sum for matroids defined by their standard representation matrices; does not check legitimacy.

Equations
Instances For
    noncomputable def standardReprSum2 {α : Type u_1} [DecidableEq α] {Sₗ Sᵣ : StandardRepr α Z2} {x y : α} (hXX : Sₗ.X Sᵣ.X = {x}) (hYY : Sₗ.Y Sᵣ.Y = {y}) (hXY : Sₗ.X Sᵣ.Y) (hYX : Sₗ.Y Sᵣ.X) :

    StandardRepr-level 2-sum of two matroids. Returns the result only if valid.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def Matroid.IsSum2of {α : Type u_1} [DecidableEq α] (M Mₗ Mᵣ : Matroid α) :

      Binary matroid M is a result of 2-summing Mₗ and Mᵣ in some way.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        Specifics about pivoting for the proof of 2-sum regularity #

        All declarations in this section are private.

        Total unimodularity after adjoining an outer product #

        All declarations in this section are private.

        Proof of regularity of the 2-sum #

        theorem standardReprSum2_X_eq {α : Type u_1} [DecidableEq α] {Sₗ Sᵣ S : StandardRepr α Z2} {x y : α} {hx : Sₗ.X Sᵣ.X = {x}} {hy : Sₗ.Y Sᵣ.Y = {y}} {hXY : Sₗ.X Sᵣ.Y} {hYX : Sₗ.Y Sᵣ.X} (hS : standardReprSum2 hx hy hXY hYX = some S) :
        S.X = Sₗ.X Sᵣ.X
        theorem standardReprSum2_Y_eq {α : Type u_1} [DecidableEq α] {Sₗ Sᵣ S : StandardRepr α Z2} {x y : α} {hx : Sₗ.X Sᵣ.X = {x}} {hy : Sₗ.Y Sᵣ.Y = {y}} {hXY : Sₗ.X Sᵣ.Y} {hYX : Sₗ.Y Sᵣ.X} (hS : standardReprSum2 hx hy hXY hYX = some S) :
        S.Y = Sₗ.Y Sᵣ.Y
        theorem standardReprSum2_hasTuSigning {α : Type u_1} [DecidableEq α] {Sₗ Sᵣ S : StandardRepr α Z2} {x y : α} {hx : Sₗ.X Sᵣ.X = {x}} {hy : Sₗ.Y Sᵣ.Y = {y}} {hXY : Sₗ.X Sᵣ.Y} {hYX : Sₗ.Y Sᵣ.X} (hSₗ : Sₗ.B.HasTuSigning) (hSᵣ : Sᵣ.B.HasTuSigning) (hS : standardReprSum2 hx hy hXY hYX = some S) :
        theorem Matroid.IsSum2of.E_eq {α : Type u_1} [DecidableEq α] (M Mₗ Mᵣ : Matroid α) (hMMM : M.IsSum2of Mₗ Mᵣ) :
        M.E = Mₗ.E Mᵣ.E
        theorem Matroid.IsSum2of.isRegular {α : Type u_1} [DecidableEq α] {M Mₗ Mᵣ : Matroid α} (hMMM : M.IsSum2of Mₗ Mᵣ) (hM : M.RankFinite) (hMₗ : Mₗ.IsRegular) (hMᵣ : Mᵣ.IsRegular) :

        Any 2-sum of regular matroids is a regular matroid. This is part two (of three) of the easy direction of the Seymour's theorem.