Matroid 1-sum #
Here we study the 1-sum of matroids (starting with the 1-sum of matrices).
Definition #
def
matrixSum1
{R : Type u_1}
[Zero R]
{Xₗ : Type u_2}
{Yₗ : Type u_3}
{Xᵣ : Type u_4}
{Yᵣ : Type u_5}
(Aₗ : Matrix Xₗ Yₗ R)
(Aᵣ : Matrix Xᵣ Yᵣ R)
:
Matrix
-level 1-sum for matroids defined by their standard representation matrices; does not check legitimacy.
Equations
- matrixSum1 Aₗ Aᵣ = ⊞ Aₗ 0 0 Aᵣ
Instances For
noncomputable def
standardReprSum1
{α : Type u_1}
[DecidableEq α]
{Sₗ Sᵣ : StandardRepr α Z2}
(hXY : Sₗ.X ⫗ Sᵣ.Y)
(hYX : Sₗ.Y ⫗ Sᵣ.X)
:
Option (StandardRepr α Z2)
StandardRepr
-level 1-sum of two matroids. Returns the result only if valid.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Binary matroid M
is a result of 1-summing Mₗ
and Mᵣ
in some way.
Equations
- One or more equations did not get rendered due to their size.
Instances For
API #
theorem
standardReprSum1_disjoint_X
{α : Type u_1}
[DecidableEq α]
{Sₗ Sᵣ S : StandardRepr α Z2}
{hXY : Sₗ.X ⫗ Sᵣ.Y}
{hYX : Sₗ.Y ⫗ Sᵣ.X}
(hS : standardReprSum1 hXY hYX = some S)
:
theorem
standardReprSum1_disjoint_Y
{α : Type u_1}
[DecidableEq α]
{Sₗ Sᵣ S : StandardRepr α Z2}
{hXY : Sₗ.X ⫗ Sᵣ.Y}
{hYX : Sₗ.Y ⫗ Sᵣ.X}
(hS : standardReprSum1 hXY hYX = some S)
:
theorem
standardReprSum1_X_eq
{α : Type u_1}
[DecidableEq α]
{Sₗ Sᵣ S : StandardRepr α Z2}
{hXY : Sₗ.X ⫗ Sᵣ.Y}
{hYX : Sₗ.Y ⫗ Sᵣ.X}
(hS : standardReprSum1 hXY hYX = some S)
:
theorem
standardReprSum1_Y_eq
{α : Type u_1}
[DecidableEq α]
{Sₗ Sᵣ S : StandardRepr α Z2}
{hXY : Sₗ.X ⫗ Sᵣ.Y}
{hYX : Sₗ.Y ⫗ Sᵣ.X}
(hS : standardReprSum1 hXY hYX = some S)
:
theorem
standardReprSum1_disjoint_E
{α : Type u_1}
[DecidableEq α]
{Sₗ Sᵣ S : StandardRepr α Z2}
{hXY : Sₗ.X ⫗ Sᵣ.Y}
{hYX : Sₗ.Y ⫗ Sᵣ.X}
(hS : standardReprSum1 hXY hYX = some S)
:
theorem
Matroid.IsSum1of.disjoint_E
{α : Type u_1}
[DecidableEq α]
{M Mₗ Mᵣ : Matroid α}
(hMMM : M.IsSum1of Mₗ Mᵣ)
:
Results #
theorem
standardReprSum1_eq_disjointSum
{α : Type u_1}
[DecidableEq α]
{Sₗ Sᵣ S : StandardRepr α Z2}
{hXY : Sₗ.X ⫗ Sᵣ.Y}
{hYX : Sₗ.Y ⫗ Sᵣ.X}
(hS : standardReprSum1 hXY hYX = some S)
:
theorem
Matroid.IsSum1of.eq_disjointSum
{α : Type u_1}
[DecidableEq α]
{M Mₗ Mᵣ : Matroid α}
(hMMM : M.IsSum1of Mₗ Mᵣ)
:
The 1-sum of matroids is a disjoint sum of those matroids.
theorem
standardReprSum1_hasTuSigning
{α : Type u_1}
[DecidableEq α]
{Sₗ Sᵣ S : StandardRepr α Z2}
{hXY : Sₗ.X ⫗ Sᵣ.Y}
{hYX : Sₗ.Y ⫗ Sᵣ.X}
(hSₗ : Sₗ.B.HasTuSigning)
(hSᵣ : Sᵣ.B.HasTuSigning)
(hS : standardReprSum1 hXY hYX = some S)
:
theorem
Matroid.IsSum1of.isRegular
{α : Type u_1}
[DecidableEq α]
{M Mₗ Mᵣ : Matroid α}
(hMMM : M.IsSum1of Mₗ Mᵣ)
(hM : M.RankFinite)
(hMₗ : Mₗ.IsRegular)
(hMᵣ : Mᵣ.IsRegular)
:
Any 1-sum of regular matroids is a regular matroid. This is part one (of three) of the easy direction of the Seymour's theorem.