Vector Matroids #
Here we study vector matroids with emphasis on binary matroids.
A set is independent in a vector matroid iff it corresponds to a linearly independent submultiset of columns.
Equations
- A.IndepCols I = (I ⊆ Y ∧ LinearIndepOn R A.transpose (Subtype.val ⁻¹' I))
Instances For
theorem
Matrix.indepCols_aug
{α R : Type}
{X Y : Set α}
[DivisionRing R]
(A : Matrix (↑X) (↑Y) R)
(I J : Set α)
(hAI : A.IndepCols I)
(hAI' : ¬Maximal A.IndepCols I)
(hAJ : Maximal A.IndepCols J)
:
A non-maximal independent set of columns can be augmented with another independent column. To see why DivisionRing
is
necessary, consider (!![0, 1, 2, 3; 1, 0, 3, 2] : Matrix (Fin 2) (Fin 4) (ZMod 6))
as a counterexample.
The set {0}
is nonmaximal independent.
The set {2, 3}
is maximal independent.
However, neither of the sets {0, 2}
or {0, 3}
is independent.
theorem
linearIndepOn_sUnion_of_directedOn
{α R : Type}
{X Y : Set α}
[Semiring R]
{A : Matrix (↑Y) (↑X) R}
{s : Set (Set α)}
(hs : DirectedOn (fun (x1 x2 : Set α) => x1 ⊆ x2) s)
(hA : ∀ a ∈ s, LinearIndepOn R A (Subtype.val ⁻¹' a))
:
LinearIndepOn R A (Subtype.val ⁻¹' ⋃₀ s)
Matrix
(interpreted as a full representation) converted to IndepMatroid
.
Equations
- A.toIndepMatroid = { E := Y, Indep := A.IndepCols, indep_empty := ⋯, indep_subset := ⋯, indep_aug := ⋯, indep_maximal := ⋯, subset_ground := ⋯ }
Instances For
def
Matrix.toMatroid
{α R : Type}
{X Y : Set α}
[DivisionRing R]
(A : Matrix (↑X) (↑Y) R)
:
Matroid α
Matrix
(interpreted as a full representation) converted to Matroid
.
Equations
Instances For
@[simp]
theorem
Matrix.toMatroid_indep
{α R : Type}
{X Y : Set α}
[DivisionRing R]
(A : Matrix (↑X) (↑Y) R)
:
theorem
Matrix.toMatroid_indep_iff
{α R : Type}
{X Y : Set α}
[DivisionRing R]
(A : Matrix (↑X) (↑Y) R)
(I : Set α)
:
@[simp]
theorem
Matrix.toMatroid_indep_iff_elem
{α R : Type}
{X Y : Set α}
[DivisionRing R]
(A : Matrix (↑X) (↑Y) R)
(I : Set α)
:
theorem
Matrix.toMatroid_isFinitary
{α R : Type}
{X Y : Set α}
[DivisionRing R]
(A : Matrix (↑X) (↑Y) R)
:
Every vector matroid is finitary.