Documentation

Seymour.Matrix.LinearIndependence

Linear Independence and Matrices #

This file provides lemmas about linear independence in the context of matrices that are not present in Mathlib.

theorem IsUnit.linearIndependent_matrix {α R : Type} [DecidableEq α] [Fintype α] [Ring R] {A : Matrix α α R} (hA : IsUnit A) :

Every invertible matrix has linearly independent rows (unapplied version).

theorem Matrix.not_linearIndependent_of_rank_lt {X Y F : Type} [Fintype X] [Fintype Y] [Field F] (A : Matrix X Y F) (hA : A.rank < #X) :
theorem Matrix.exists_submatrix_rank {X Y F : Type} [Fintype X] [Fintype Y] [Field F] (A : Matrix X Y F) :
∃ (r : Fin A.rankX), (A.submatrix r id).rank = A.rank
theorem Matrix.linearIndependent_iff_exists_submatrix_unit {X Y F : Type} [Fintype X] [Fintype Y] [Field F] [DecidableEq X] (A : Matrix X Y F) :
LinearIndependent F A ∃ (f : XY), IsUnit (A.submatrix id f)

Rows of a matrix are linearly independent iff the matrix contains a nonsigular square submatrix of full height.

theorem Matrix.linearIndependent_iff_exists_submatrix_det {X Y F : Type} [Fintype X] [Fintype Y] [Field F] [DecidableEq X] (A : Matrix X Y F) :
LinearIndependent F A ∃ (f : XY), (A.submatrix id f).det 0

Rows of a matrix are linearly independent iff the matrix contains a square submatrix of full height with nonzero det.