Documentation

Seymour.Basic.Sets

Sets #

This file provides lemmas about sets that are not present in Mathlib.

theorem Disjoint.ni_right_of_in_left {α : Type u_1} {X Y : Set α} {a : α} (hXY : X Y) (ha : a X) :
aY
theorem Disjoint.ni_left_of_in_right {α : Type u_1} {X Y : Set α} {a : α} (hXY : X Y) (ha : a Y) :
aX
theorem in_left_of_in_union_of_ni_right {α : Type u_1} {X Y : Set α} {a : α} (haXY : a X Y) (haY : aY) :
a X
theorem in_right_of_in_union_of_ni_left {α : Type u_1} {X Y : Set α} {a : α} (haXY : a X Y) (haX : aX) :
a Y
theorem singleton_inter_in_left {α : Type u_1} {X Y : Set α} {a : α} (ha : X Y = {a}) :
a X
theorem singleton_inter_in_right {α : Type u_1} {X Y : Set α} {a : α} (ha : X Y = {a}) :
a Y
theorem right_eq_right_of_union_eq_union {α : Type u_1} {A₁ A₂ B₁ B₂ : Set α} (hA : A₁ = A₂) (hB₁ : A₁ B₁) (hB₂ : A₂ B₂) (hAB : A₁ B₁ = A₂ B₂) :
B₁ = B₂
theorem union_disjoint_union_iff {α : Type u_1} (A₁ A₂ B₁ B₂ : Set α) :
A₁ A₂ B₁ B₂ (A₁ B₁ A₂ B₁) A₁ B₂ A₂ B₂
theorem union_disjoint_union_aux {α : Type u_1} {A B C D : Set α} (hAB : A B) (hCD : C D) (hCB : C B) (hAD : A D) :
A C B D
theorem union_disjoint_union {α : Type u_1} {A B C D : Set α} (hAB : A B) (hCD : C D) (hAD : A D) (hBC : B C) :
A C B D
theorem Subtype.subst_elem {α : Type u_1} {X Y : Set α} (x : X) (hXY : X = Y) :
↑(hXY x) = x
theorem eq_toFinset_of_toSet_eq {α : Type u_1} {s : Finset α} {S : Set α} [Fintype S] (hsS : s = S) :
def HasSubset.Subset.equiv {α : Type u_1} {A B : Set α} [(i : α) → Decidable (i A)] (hAB : A B) :
A ↑(B \ A) B
Equations
  • hAB.equiv = { toFun := fun (x : A ↑(B \ A)) => Sum.casesOn x hAB.elem .elem, invFun := fun (i : B) => if hiA : i A then i, hiA else i, , left_inv := , right_inv := }
Instances For
    theorem ofSupportFinite_support_eq {α : Type u_1} {β : Type u_2} [Zero β] {f : αβ} {S : Set α} (hS : Finite S) (hfS : f.support = S) :
    theorem finset_of_cardinality_between {α : Type u_1} {β : Type u_2} [Fintype α] [Fintype β] {n : } ( : #α < n) (hn : n #α + #β) :
    ∃ (b : Finset β), #(α { x : β // x b }) = n Nonempty { x : β // x b }