Documentation

Seymour.Basic.Sets

Sets #

This file provides lemmas about sets that are not present in Mathlib.

theorem singleton_inter_in_left {α : Type} {X Y : Set α} {a : α} (ha : X Y = {a}) :
a X
theorem singleton_inter_in_right {α : Type} {X Y : Set α} {a : α} (ha : X Y = {a}) :
a Y
theorem disjoint_of_sdiff_inter {α : Type} (X Y : Set α) :
X \ (X Y) Y \ (X Y)
theorem disjoint_of_sdiff_singleton {α : Type} {X Y : Set α} {a : α} (ha : X Y = {a}) :
X \ {a} Y \ {a}
theorem right_eq_right_of_union_eq_union {α : Type} {A₁ A₂ B₁ B₂ : Set α} (hA : A₁ = A₂) (hB₁ : A₁ B₁) (hB₂ : A₂ B₂) (hAB : A₁ B₁ = A₂ B₂) :
B₁ = B₂
theorem eq_toFinset_of_toSet_eq {α : Type} {s : Finset α} {S : Set α} [Fintype S] (hsS : s = S) :
theorem impossible_nmem_sdiff_triplet {α : Type} {S : Set α} {a b c : α} {e : ↑(S \ {c})} (heS : eS \ (a b {c})) (hea : e a) (heb : e b) :
def HasSubset.Subset.equiv {α : Type} {A B : Set α} [(i : α) → Decidable (i A)] (hAB : A B) :
A ↑(B \ A) B
Equations
  • hAB.equiv = { toFun := fun (x : A ↑(B \ A)) => Sum.casesOn x hAB.elem .elem, invFun := fun (i : B) => if hiA : i A then i, hiA else i, , left_inv := , right_inv := }
Instances For
    theorem ofSupportFinite_support_eq {α β : Type} [Zero β] {f : αβ} {S : Set α} (hS : Finite S) (hfS : f.support = S) :
    theorem finset_of_cardinality_between {α β : Type} [Fintype α] [Fintype β] {n : } ( : #α < n) (hn : n #α + #β) :
    ∃ (b : Finset β), #(α { x : β // x b }) = n Nonempty { x : β // x b }