Regularity of 1-, 2-, and 3-Sums of Matroids

4 Regularity of 3-Sum

4.1 Definition

Definition 46

Let \(B_{\ell } \in \mathbb {Z}_{2}^{(X_{\ell } \cup \{ x_{0}, x_{1}\} ) \times (Y_{\ell } \cup \{ y_{2}\} )}, B_{r} \in \mathbb {Z}_{2}^{(X_{r} \cup \{ x_{2}\} ) \times (Y_{r} \cup \{ y_{0}, y_{1}\} )}\) be matrices of the form

\begin{tikzpicture} 
            \begin{scope}[scale=0.5, shift={(-5.5, -3)}]
                \node[anchor=east] at (0, 3) {$B_{\ell} =$};
                \draw (0, 0) -- (5, 0) -- (5, 6) -- (0, 6) -- cycle;
                \draw (0, 2) -- (5, 2);
                \draw (4, 0) -- (4, 6);
                \draw (2, 0) -- (2, 3) -- (5, 3);
                \draw (4, 1) -- (5, 1);
                \draw (3, 2) -- (3, 3);
                \node at (2, 4) {$A_{\ell}$};
                \node at (1, 1) {$D_{\ell}$};
                \node at (4.5, 4) {$0$};
                \node at (2.5, 2.5) {$1$};
                \node at (3.5, 2.5) {$1$};
                \node at (4.5, 2.5) {$0$};
                \node at (4.5, 1.5) {$1$};
                \node at (4.5, 0.5) {$1$};
                \node at (3, 1) {$D_{0}$};
            \end{scope}
            \node[anchor=west] at (0, 0) {and};
            \begin{scope}[scale=0.5, shift={(3.5, -2.5)}]
                \node[anchor=east] at (0, 2.5) {$B_{r} =$};
                \draw (0, 0) -- (6, 0) -- (6, 5) -- (0, 5) -- cycle;
                \draw (2, 0) -- (2, 5);
                \draw (0, 4) -- (6, 4);
                \draw (0, 2) -- (3, 2) -- (3, 5);
                \draw (1, 4) -- (1, 5);
                \draw (2, 3) -- (3, 3);
                \node at (1, 1) {$D_{r}$};
                \node at (1, 3) {$D_{0}$};
                \node at (0.5, 4.5) {$1$};
                \node at (1.5, 4.5) {$1$};
                \node at (4, 4.5) {$0$};
                \node at (2.5, 2.5) {$1$};
                \node at (2.5, 3.5) {$1$};
                \node at (2.5, 4.5) {$0$};
                \node at (4, 2) {$A_{r}$};
            \end{scope}
            \node[anchor=west] at (5, 0) {where $D_{0} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ or $D_{0} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.};
        \end{tikzpicture}

The \(3\)-sum \(B = B_{\ell } \oplus _{3} B_{r} \in \mathbb {Z}_{2}^{(X_{\ell } \cup X_{r}) \times (Y_{\ell } \cup Y_{r})}\) of \(B_{\ell }\) and \(B_{r}\) is defined as

\begin{tikzpicture} 
            \begin{scope}[scale=0.5, shift={(0, -4)}]
                \node[anchor=east] at (0, 4) {$B =$};
                \draw (0, 0) -- (8, 0) -- (8, 8) -- (0, 8) -- cycle;
                \draw (0, 4) -- (8, 4);
                \draw (4, 0) -- (4, 8);
                \draw (0, 2) -- (5, 2) -- (5, 5) -- (2, 5) -- (2, 0);
                \draw (3, 4) -- (3, 5);
                \draw (4, 3) -- (5, 3);
                \node at (2, 6) {$A_{\ell}$};
                \node at (6, 2) {$A_{r}$};
                \node at (6, 6) {$0$};
                \node at (1, 1) {$D_{\ell r}$};
                \node at (1, 3) {$D_{\ell}$};
                \node at (3, 1) {$D_{r}$};
                \node at (3, 3) {$D_{0}$};
                \node at (2.5, 4.5) {$1$};
                \node at (3.5, 4.5) {$1$};
                \node at (4.5, 4.5) {$0$};
                \node at (4.5, 3.5) {$1$};
                \node at (4.5, 2.5) {$1$};
            \end{scope}
            \node[anchor=west] at (4.25, 0) {where $D_{\ell r} = D_{r} \cdot (D_{0})^{-1} \cdot D_{\ell}$.};
        \end{tikzpicture}

Here \(x_{2} \in X_{\ell }\), \(x_{0}, x_{1} \in X_{r}\), \(y_{0}, y_{1} \in Y_{\ell }\), \(y_{2} \in Y_{r}\), \(A_{\ell } \in \mathbb {Z}_{2}^{X_{\ell } \times Y_{\ell }}\), \(A_{r} \in \mathbb {Z}_{2}^{X_{r} \times Y_{r}}\), \(D_{\ell } \in \mathbb {Z}_{2}^{\{ x_{0}, x_{1}\} \times (Y_{\ell } \setminus \{ y_{0}, y_{1}\} )}\), \(D_{r} \in \mathbb {Z}_{2}^{(X_{r} \setminus \{ x_{0}, x_{1}\} ) \times \{ y_{0}, y_{1}\} }\), \(D_{\ell r} \in \mathbb {Z}_{2}^{(X_{r} \setminus \{ x_{0}, x_{1}\} ) \times (Y_{\ell } \setminus \{ y_{0}, y_{1}\} )}\), \(D_{0} \in \mathbb {Z}_{2}^{\{ x_{0}, x_{1}\} \times \{ y_{0}, y_{1}\} }\). The indexing is consistent everywhere.

Note that \(D_{0}\) is non-singular by construction, so \(D_{\ell r}\) and \(B\) are well-defined. Moreover, a non-singular \(\mathbb {Z}_{2}^{2 \times 2}\) matrix is either \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\) or \(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\) up to re-indexing. Thus, Definition 46 can be equivalently restated with \(D_{0}\) required to be non-singular and \(B_{\ell }\), \(B_{r}\), and \(B\) re-indexed appropriately.

Definition 47

A matroid \(M\) is a \(3\)-sum of matroids \(M_{\ell }\) and \(M_{r}\) if there exist standard \(\mathbb {Z}_{2}\) representation matrices \(B_{\ell }\), \(B_{r}\), and \(B\) (for \(M_{\ell }\), \(M_{r}\), and \(M\), respectively) of the form given in Definition 46.

4.2 Canonical Signing

Definition 48

We call \(D_{0}' \in \mathbb {Q}^{\{ x_{0}, x_{1}\} \times \{ y_{0}, y_{1}\} }\) the canonical signing of \(D_{0} \in \mathbb {Z}_{2}^{\{ x_{0}, x_{1}\} \times \{ y_{0}, y_{1}\} }\) if

\[ D_{0} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix} \quad \text{and} \quad D_{0}' = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad \text{or} \quad D_{0} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad D_{0}' = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}. \]

Similarly, we call \(S' \in \mathbb {Q}^{\{ x_{0}, x_{1}, x_{2}\} \times \{ y_{0}, y_{1}, y_{2}\} }\) the canonical signing of \(S \in \mathbb {Z}_{2}^{\{ x_{0}, x_{1}, x_{2}\} \times \{ y_{0}, y_{1}, y_{2}\} }\) if

\begin{tikzpicture} 
            \begin{scope}[scale=0.5, shift={(-3.5, -1.5)}]
                \node[anchor=east] at (0, 1.5) {$S =$};
                \draw (0, 0) -- (3, 0) -- (3, 3) -- (0, 3) -- cycle;
                \draw (0, 2) -- (3, 2);
                \draw (2, 0) -- (2, 3);
                \draw (1, 2) -- (1, 3);
                \draw (2, 1) -- (3, 1);
                \node at (1, 1) {$D_{0}$};
                \node at (0.5, 2.5) {$1$};
                \node at (1.5, 2.5) {$1$};
                \node at (2.5, 2.5) {$0$};
                \node at (2.5, 1.5) {$1$};
                \node at (2.5, 0.5) {$1$};
            \end{scope}
            \node[anchor=west] at (0, 0) {and};
            \begin{scope}[scale=0.5, shift={(3.5, -1.5)}]
                \node[anchor=east] at (0, 1.5) {$S' =$};
                \draw (0, 0) -- (3, 0) -- (3, 3) -- (0, 3) -- cycle;
                \draw (0, 2) -- (3, 2);
                \draw (2, 0) -- (2, 3);
                \draw (1, 2) -- (1, 3);
                \draw (2, 1) -- (3, 1);
                \node at (1, 1) {$D_{0}'$};
                \node at (0.5, 2.5) {$1$};
                \node at (1.5, 2.5) {$1$};
                \node at (2.5, 2.5) {$0$};
                \node at (2.5, 1.5) {$1$};
                \node at (2.5, 0.5) {$1$};
            \end{scope}
        \end{tikzpicture}

To simplify notation, going forward we use \(D_{0}\), \(D_{0}'\), \(S\), and \(S'\) to refer to the matrices of the form above. BTW, the canonical signing \(S'\) of \(S\) (from Definition 48) is TU.

Let \(Q\) be a TU signing of \(S\) (from Definition 48). Let \(u \in \{ 0, \pm 1\} ^{\{ x_{0}, x_{1}, x_{2}\} }\), \(v \in \{ 0, \pm 1\} ^{\{ y_{0}, y_{1}, y_{2}\} }\), and \(Q'\) be defined as follows:

\begin{align*} u(i) & = \begin{cases} Q (x_{2}, y_{0}) \cdot Q (x_{0}, y_{0}), & i = x_{0}, \\ Q (x_{2}, y_{0}) \cdot Q (x_{0}, y_{0}) \cdot Q (x_{0}, y_{2}) \cdot Q (x_{1}, y_{2}), & i = x_{1}, \\ 1, & i = x_{2}, \\ \end{cases}\\ v(j) & = \begin{cases} Q (x_{2}, y_{0}), & j = y_{0}, \\ Q (x_{2}, y_{1}), & j = y_{1}, \\ Q (x_{2}, y_{0}) \cdot Q (x_{0}, y_{0}) \cdot Q (x_{0}, y_{2}), & j = y_{2}, \\ \end{cases}\\ Q’ (i, j) & = Q (i, j) \cdot u(i) \cdot v(j) \quad \forall i \in \{ x_{0}, x_{1}, x_{2}\} , \ \forall j \in \{ y_{0}, y_{1}, y_{2}\} . \end{align*}

Then \(Q' = S'\) (from Definition 48).

Proof

Since \(Q\) is a TU signing of \(S\) and \(Q'\) is obtained from \(Q\) by multiplying rows and columns by \(\pm 1\) factors, \(Q'\) is also a TU signing of \(S\). By construction, we have

\begin{align*} Q’ (x_{2}, y_{0}) & = Q (x_{2}, y_{0}) \cdot 1 \cdot Q (x_{2}, y_{0}) = 1, \\ Q’ (x_{2}, y_{1}) & = Q (x_{2}, y_{1}) \cdot 1 \cdot Q (x_{2}, y_{1}) = 1, \\ Q’ (x_{2}, y_{2}) & = 0, \\ Q’ (x_{0}, y_{0}) & = Q (x_{0}, y_{0}) \cdot (Q (x_{2}, y_{0}) \cdot Q (x_{0}, y_{0})) \cdot Q (x_{2}, y_{0}) = 1, \\ Q’ (x_{0}, y_{1}) & = Q (x_{0}, y_{1}) \cdot (Q (x_{2}, y_{0}) \cdot Q (x_{0}, y_{0})) \cdot Q (x_{2}, y_{1}), \\ Q’ (x_{0}, y_{2}) & = Q (x_{0}, y_{2}) \cdot (Q (x_{2}, y_{0}) \cdot Q (x_{0}, y_{0})) \cdot (Q (x_{2}, y_{0}) \cdot Q (x_{0}, y_{0}) \cdot Q (x_{0}, y_{2})) = 1, \\ Q’ (x_{1}, y_{0}) & = 0, \\ Q’ (x_{1}, y_{1}) & = Q (x_{1}, y_{1}) \cdot (Q (x_{2}, y_{0}) \cdot Q (x_{0}, y_{0}) \cdot Q (x_{0}, y_{2}) \cdot Q (x_{1}, y_{2})) \cdot (Q (x_{2}, y_{1})), \\ Q’ (x_{1}, y_{2}) & = Q (x_{1}, y_{2}) \cdot (Q (x_{2}, y_{0}) \cdot Q (x_{0}, y_{0}) \cdot Q (x_{0}, y_{2}) \cdot Q (x_{1}, y_{2})) \cdot (Q (x_{2}, y_{0}) \cdot Q (x_{0}, y_{0}) \cdot Q (x_{0}, y_{2})) = 1. \end{align*}

Thus, it remains to show that \(Q' (x_{0}, y_{1}) = S' (x_{0}, y_{1})\) and \(Q' (x_{1}, y_{1}) = S' (x_{1}, y_{1})\).

Consider the entry \(Q' (x_{0}, y_{1})\). If \(D_{0} (x_{0}, y_{1}) = 0\), then \(Q' (x_{0}, y_{1}) = 0 = S' (x_{0}, y_{1})\). Otherwise, we have \(D_{0} (x_{0}, y_{1}) = 1\), and so \(Q' (x_{0}, y_{1}) \in \{ \pm 1\} \), as \(Q'\) is a signing of \(S\). If \(Q' (x_{0}, y_{1}) = -1\), then

\[ \det Q' (\{ x_{0}, x_{2}\} , \{ y_{0}, y_{1}\} ) = \det \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = 2 \notin \{ 0, \pm 1\} , \]

which contradicts TUness of \(Q'\). Thus, \(Q' (x_{0}, y_{1}) = 1 = S' (x_{0}, y_{1})\).

Consider the entry \(Q' (x_{1}, y_{1})\). Since \(Q'\) is a signing of \(S\), we have \(Q' (x_{1}, y_{1}) \in \{ \pm 1\} \). Consider two cases.

  1. Suppose that \(D_{0} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\). If \(Q' (x_{1}, y_{1}) = 1\), then \( \det Q = \det \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} = -2 \notin \{ 0, \pm 1\} , \) which contradicts TUness of \(Q'\). Thus, \(Q' (x_{1}, y_{1}) = -1 = S' (x_{1}, y_{1})\).

  2. Suppose that \(D_{0} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\). If \(Q' (x_{1}, y_{1}) = -1\), then \( \det Q (\{ x_{0}, x_{1}\} , \{ y_{1}, y_{2}\} ) = \det \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = 2 \notin \{ 0, \pm 1\} , \) which contradicts TUness of \(Q'\). Thus, \(Q' (x_{1}, y_{1}) = 1 = S' (x_{1}, y_{1})\).

Definition 50

Let \(X\) and \(Y\) be sets with \(\{ x_{0}, x_{1}, x_{2}\} \subseteq X\) and \(\{ y_{0}, y_{1}, y_{2}\} \subseteq Y\). Let \(Q \in \mathbb {Q}^{X \times Y}\) be a TU matrix. Define \(u \in \{ 0, \pm 1\} ^{X}\), \(v \in \{ 0, \pm 1\} ^{Y}\), and \(Q'\) as follows:

\begin{align*} u(i) & = \begin{cases} Q (x_{2}, y_{0}) \cdot Q (x_{0}, y_{0}), & i = x_{0}, \\ Q (x_{2}, y_{0}) \cdot Q (x_{0}, y_{0}) \cdot Q (x_{0}, y_{2}) \cdot Q (x_{1}, y_{2}), & i = x_{1}, \\ 1, & i = x_{2}, \\ 1, & i \in X \setminus \{ x_{0}, x_{1}, x_{2}\} , \end{cases}\\ v(j) & = \begin{cases} Q (x_{2}, y_{0}), & j = y_{0}, \\ Q (x_{2}, y_{1}), & j = y_{1}, \\ Q (x_{2}, y_{0}) \cdot Q (x_{0}, y_{0}) \cdot Q (x_{0}, y_{2}), & j = y_{2}, \\ 1, & j \in Y \setminus \{ y_{0}, y_{1}, y_{2}\} , \\ \end{cases}\\ Q’ (i, j) & = Q (i, j) \cdot u(i) \cdot v(j) \quad \forall i \in X, \ \forall j \in Y. \end{align*}

We call \(Q'\) the canonical re-signing of \(Q\).

Let \(X\) and \(Y\) be sets with \(\{ x_{0}, x_{1}, x_{2}\} \subseteq X\) and \(\{ y_{0}, y_{1}, y_{2}\} \subseteq Y\). Let \(Q \in \mathbb {Q}^{X \times Y}\) be a TU signing of \(Q_{0} \in \mathbb {Z}_{2}^{X \times Y}\) such that \(Q_{0} (\{ x_{0}, x_{1}, x_{2}\} , \{ y_{0}, y_{1}, y_{2}\} ) = S\) (from Definition 48). Then the canonical re-signing \(Q'\) of \(Q\) (from Definition 50) is a TU signing of \(Q_{0}\) and \(Q' (\{ x_{0}, x_{1}, x_{2}\} , \{ y_{0}, y_{1}, y_{2}\} ) = S'\) (from Definition 48).

Proof

Since \(Q\) is a TU signing of \(Q_{0}\) and \(Q'\) is obtained from \(Q\) by multiplying some rows and columns by \(\pm 1\) factors, \(Q'\) is also a TU signing of \(Q_{0}\). Equality \(Q' (\{ x_{0}, x_{1}, x_{2}\} , \{ y_{0}, y_{1}, y_{2}\} ) = S'\) follows from Lemma 49.

Definition 52

Suppose that \(B_{\ell }\) and \(B_{r}\) from Definition 46 have TU signings \(B_{\ell }'\) and \(B_{r}'\), respectively. Let \(B_{\ell }''\) and \(B_{r}''\) be the canonical re-signings (from Definition 50) of \(B_{\ell }'\) and \(B_{r}'\), respectively. Let \(A_{\ell }''\), \(A_{r}''\), \(D_{\ell }''\), \(D_{r}''\), and \(D_{0}''\) be blocks of \(B_{\ell }''\) and \(B_{r}''\) analogous to blocks \(A_{\ell }\), \(A_{r}\), \(D_{\ell }\), \(D_{r}\), and \(D_{0}\) of \(B_{\ell }\) and \(B_{r}\). The canonical signing \(B''\) of \(B\) is defined as

\begin{tikzpicture} 
            \begin{scope}[scale=0.5, shift={(0, -4)}]
                \node[anchor=east] at (0, 4) {$B'' =$};
                \draw (0, 0) -- (8, 0) -- (8, 8) -- (0, 8) -- cycle;
                \draw (0, 4) -- (8, 4);
                \draw (4, 0) -- (4, 8);
                \draw (0, 2) -- (5, 2) -- (5, 5) -- (2, 5) -- (2, 0);
                \draw (3, 4) -- (3, 5);
                \draw (4, 3) -- (5, 3);
                \node at (2, 6) {$A_{\ell}''$};
                \node at (6, 2) {$A_{r}''$};
                \node at (6, 6) {$0$};
                \node at (1, 1) {$D_{\ell r}''$};
                \node at (1, 3) {$D_{\ell}''$};
                \node at (3, 1) {$D_{r}''$};
                \node at (3, 3) {$D_{0}''$};
                \node at (2.5, 4.5) {$1$};
                \node at (3.5, 4.5) {$1$};
                \node at (4.5, 4.5) {$0$};
                \node at (4.5, 3.5) {$1$};
                \node at (4.5, 2.5) {$1$};
            \end{scope}
            \node[anchor=west] at (4.25, 0) {where $D_{\ell r}'' = D_{r}'' \cdot (D_{0}'')^{-1} \cdot D_{\ell}''$.};
        \end{tikzpicture}

Note that \(D_{0}''\) is non-singular by construction, so \(D_{\ell r}''\) and hence \(B''\) are well-defined.

4.3 Properties of Canonical Signing

\(B''\) from Definition 52 is a signing of \(B\).

Proof

By Lemma 51, \(B_{\ell }''\) and \(B_{r}''\) are TU signings of \(B_{\ell }\) and \(B_{r}\), respectively. As a result, blocks \(A_{\ell }''\), \(A_{r}''\), \(D_{\ell }''\), \(D_{r}''\), and \(D_{0}''\) in \(B''\) are signings of the corresponding blocks in \(B\). Thus, it remains to show that \(D_{\ell r}''\) is a signing of \(D_{\ell r}\). This can be verified via a direct calculation. (Todo: Need details?)

Suppose that \(B_{r}\) from Definition 46 has a TU signing \(B_{r}'\). Let \(B_{r}''\) be the canonical re-signing (from Definition 50) of \(B_{r}'\). Let \(c_{0}'' = B_{r}'' (X_{r}, y_{0})\), \(c_{1}'' = B_{r}'' (X_{r}, y_{1})\), and \(c_{2}'' = c_{0}'' - c_{1}''\). Then the following statements hold.

  1. For every \(i \in X_{r}\), \(\begin{bmatrix} c_{0}” (i) & c_{1}” (i) \end{bmatrix} \in \{ 0, \pm 1\} ^{\{ y_{0}, y_{1}\} } \setminus \left\{ \begin{bmatrix} 1 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 1 \end{bmatrix} \right\} \).

  2. For every \(i \in X_{r}\), \(c_{2}'' (i) \in \{ 0, \pm 1\} \).

  3. \(\begin{bmatrix} c_{0}” & c_{2}” & A_{r}” \end{bmatrix}\) is TU.

  4. \(\begin{bmatrix} c_{1}” & c_{2}” & A_{r}” \end{bmatrix}\) is TU.

  5. \(\begin{bmatrix} c_{0}” & c_{1}” & c_{2}” & A_{r}” \end{bmatrix}\) is TU.

Proof

Throughout the proof we use that \(B_{r}''\) is TU, which holds by Lemma 51.

  1. Since \(B_{r}''\) is TU, all its entries are in \(\{ 0, \pm 1\} \), and in particular \(\begin{bmatrix} c_{0}” (i) & c_{1}” (i) \end{bmatrix} \in \{ 0, \pm 1\} ^{\{ y_{0}, y_{1}\} }\). If \(\begin{bmatrix} c_{0}’ (i) & c_{1}” (i) \end{bmatrix} = \begin{bmatrix} 1 & -1 \end{bmatrix}\), then

    \[ \det B_{r}'' (\{ x_{2}, i\} , \{ y_{0}, y_{1}\} ) = \det \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = -2 \notin \{ 0, \pm 1\} , \]

    which contradicts TUness of \(B_{r}''\). Similarly, if \(\begin{bmatrix} c_{0}” (i) & c_{1}” (i) \end{bmatrix} = \begin{bmatrix} -1 & 1 \end{bmatrix} \), then

    \[ \det B_{r}'' (\{ x_{2}, i\} , \{ y_{0}, y_{1}\} ) = \det \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = 2 \notin \{ 0, \pm 1\} , \]

    which contradicts TUness of \(B_{r}''\). Thus, the desired statement holds.

  2. Follows from item 1 and a direct calculation.

  3. Performing a short tableau pivot in \(B_{r}''\) on \((x_{2}, y_{0})\) yields:

    \[ B_{r}'' = \begin{bmatrix} \fbox{1} & 1 & 0 \\ c_{0} & c_{1} & A_{r} \end{bmatrix} \quad \to \quad \begin{bmatrix} 1 & 1 & 0 \\ -c_{0} & c_{1}” - c_{0} & A_{r} \end{bmatrix} \]

    The resulting matrix can be transformed into \(\begin{bmatrix} c_{0}” & c_{2}” & A_{r}” \end{bmatrix}\) by removing row \(x_{2}\) and multiplying columns \(y_{0}\) and \(y_{1}\) by \(-1\). Since \(B_{r}''\) is TU and since TUness is preserved under pivoting, taking submatrices, multiplying columns by \({\pm 1}\) factors, we conclude that \(\begin{bmatrix} c_{0}” & c_{2}” & A_{r}” \end{bmatrix}\) is TU.

  4. Similar to item 4, performing a short tableau pivot in \(B_{r}''\) on \((x_{2}, y_{1})\) yields:

    \[ B_{r}'' = \begin{bmatrix} 1 & \fbox{1} & 0 \\ c_{0} & c_{1} & A_{r} \end{bmatrix} \quad \to \quad \begin{bmatrix} 1 & 1 & 0 \\ c_{0}” - c_{1} & -c_{1} & A_{r} \end{bmatrix} \]

    The resulting matrix can be transformed into \(\begin{bmatrix} c_{1}” & c_{2}” & A_{r}” \end{bmatrix}\) by removing row \(x_{2}\), multiplying column \(y_{1}\) by \(-1\), and swapping the order of columns \(y_{0}\) and \(y_{1}\). Since \(B_{r}''\) is TU and since TUness is preserved under pivoting, taking submatrices, multiplying columns by \({\pm 1}\) factors, and re-ordering columns, we conclude that \(\begin{bmatrix} c_{1}” & c_{2}” & A_{r}” \end{bmatrix}\) is TU.

  5. Let \(V\) be a square submatrix of \(\begin{bmatrix} c_{0}” & c_{1}” & c_{2}” & A_{r}” \end{bmatrix}\). Our goal is to show that \(\det V \in \{ 0, \pm 1\} \).

    Suppose that column \(c_{2}''\) is not in \(V\). Then \(V\) is a submatrix of \(B_{r}''\), which is TU. Thus, \(\det V \in \{ 0, \pm 1\} \). Going forward we assume that column \(z\) is in \(V\).

    Suppose that columns \(c_{0}''\) and \(c_{1}''\) are both in \(V\). Then \(V\) contains columns \(c_{0}''\), \(c_{1}''\), and \(c_{2}'' = c_{0}'' - c_{1}''\), which are linearly. Thus, \(\det V = 0\). Going forward we assume that at least one of the columns \(c_{0}''\) and \(c_{1}''\) is not in \(V\).

    Suppose that column \(c_{1}''\) is not in \(V\). Then \(V\) is a submatrix of \(\begin{bmatrix} c_{0}” & c_{2}” & A_{r}” \end{bmatrix}\), which is TU by item 3. Thus, \(\det V \in \{ 0, \pm 1\} \). Similarly, if column \(c_{0}''\) is not in \(V\), then \(V\) is a submatrix of \(\begin{bmatrix} c_{1}” & c_{2}” & A_{r}” \end{bmatrix}\), which is TU by item 4. Thus, \(\det V \in \{ 0, \pm 1\} \).

Suppose that \(B_{\ell }\) from Definition 46 has a TU signing \(B_{\ell }'\). Let \(B_{\ell }''\) be the canonical re-signing (from Definition 50) of \(B_{\ell }'\). Let \(d_{0}'' = B_{\ell }'' (x_{0}, Y_{\ell })\), \(d_{1}'' = B_{\ell }'' (x_{1}, Y_{\ell })\), and \(d_{2}'' = d_{0}'' - d_{1}''\). Then the following statements hold.

  1. For every \(j \in Y_{\ell }\), \(\begin{bmatrix} d_{0}” (i) \\ d_{1}” (j) \end{bmatrix} \in \{ 0, \pm 1\} ^{\{ x_{0}, x_{1}\} } \setminus \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\} \).

  2. For every \(j \in Y_{\ell }\), \(d_{2}'' (j) \in \{ 0, \pm 1\} \).

  3. \(\begin{bmatrix} A_{\ell }” \\ d_{0}” \\ d_{2}” \end{bmatrix}\) is TU.

  4. \(\begin{bmatrix} A_{\ell }” \\ d_{1}” \\ d_{2}” \end{bmatrix}\) is TU.

  5. \(\begin{bmatrix} A_{\ell }” \\ d_{0}” \\ d_{1}” \\ d_{2}” \end{bmatrix}\) is TU.

Proof

Apply Lemma 54 to \(B_{\ell }^{\top }\), or repeat the same arguments up to transposition.

Let \(B''\) be from Definition 52. Let \(c_{0}'' = B'' (X_{r}, y_{0})\), \(c_{1}'' = B'' (X_{r}, y_{1})\), and \(c_{2}'' = c_{0}'' - c_{1}''\). Similarly, let \(d_{0}'' = B'' (x_{0}, Y_{\ell })\), \(d_{1}'' = B'' (x_{1}, Y_{\ell })\), and \(d_{2}'' = d_{0}'' - d_{1}''\). Then the following statements hold.

  1. For every \(i \in X_{r}\), \(c_{2}'' (i) \in \{ 0, \pm 1\} \).

  2. If \(D_{0}'' = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\), then \(D'' = c_{0}'' \otimes d_{0}'' - c_{1}'' \otimes d_{1}''\). If \(D_{0}'' = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\), then \(D'' = c_{0}'' \otimes d_{0}'' - c_{0}'' \otimes d_{1}'' + c_{1}'' \otimes d_{1}''\).

  3. For every \(j \in Y_{\ell }\), \(D'' (X_{r}, j) \in \{ 0, \pm c_{0}'', \pm c_{1}'', \pm c_{2}''\} \).

  4. For every \(i \in X_{r}\), \(D'' (i, Y_{\ell }) \in \{ 0, \pm d_{0}'', \pm d_{1}'', \pm d_{2}''\} \).

  5. \(\begin{bmatrix} A_{\ell }” \\ D” \end{bmatrix}\) is TU.

Proof
  1. Holds by Lemma 54.2.

  2. Note that

    \[ \begin{bmatrix} D_{\ell }” \\ D_{\ell r}” \end{bmatrix} = \begin{bmatrix} D_{0}” \\ D_{r}” \end{bmatrix} \cdot (D_{0}'')^{-1} \cdot D_{\ell }'', \quad \begin{bmatrix} D_{0}” \\ D_{r}” \end{bmatrix} = \begin{bmatrix} D_{0}” \\ D_{r}” \end{bmatrix} \cdot (D_{0}'')^{-1} \cdot D_{0}'', \quad \begin{bmatrix} D_{0}” \\ D_{r}” \end{bmatrix} = \begin{bmatrix} c_{0}” & c_{1}” \end{bmatrix}, \quad \begin{bmatrix} D_{\ell }” & D_{0}” \end{bmatrix} = \begin{bmatrix} d_{0}” \\ d_{1}” \end{bmatrix}. \]

    Thus,

    \[ D'' = \begin{bmatrix} D_{\ell }” & D_{0}” \\ D_{\ell r}” & D_{r}” \end{bmatrix} = \begin{bmatrix} D_{0}” \\ D_{r}” \end{bmatrix} \cdot (D_{0}'')^{-1} \cdot \begin{bmatrix} D_{\ell }” & D_{0}” \end{bmatrix} = \begin{bmatrix} c_{0}” & c_{1}” \end{bmatrix} \cdot (D_{0}'')^{-1} \cdot \begin{bmatrix} d_{0}” \\ d_{1}” \end{bmatrix}. \]

    Considering the two cases for \(D_{0}''\) and performing the calculations yields the desired results.

  3. Let \(j \in Y_{\ell }\). By Lemma 55.1, \(\begin{bmatrix} d_{0}” (i) \\ d_{1}” (j) \end{bmatrix} \in \{ 0, \pm 1\} ^{\{ x_{0}, x_{1}\} } \setminus \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\} \). Consider two cases.

    1. If \(D_{0}'' = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\), then by item 2 we have \(D'' (X_{r}, j) = d_{0}'' (j) \cdot c_{0}'' + (-d_{1}'' (j)) \cdot c_{1}''\). By considering all possible cases for \(d_{0}'' (j)\) and \(d_{1}'' (j)\), we conclude that \(D'' (X_{r}, j) \in \{ 0, \pm c_{0}'', \pm c_{1}'', \pm (c_{0}'' - c_{1}'')\} \).

    2. If \(D_{0}'' = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\), then by item 2 we have \(D'' (X_{r}, j) = (d_{0}'' (j) - d_{1}'' (j)) \cdot c_{0}'' + d_{1}'' (j) \cdot c_{1}''\). By considering all possible cases for \(d_{0}'' (j)\) and \(d_{1}'' (j)\), we conclude that \(D'' (X_{r}, j) \in \{ 0, \pm c_{0}'', \pm c_{1}'', \pm (c_{0}'' - c_{1}'')\} \).

  4. Let \(i \in X_{r}\). By Lemma 54.1, \(\begin{bmatrix} c_{0}” (i) & c_{1}” (i) \end{bmatrix} \in \{ 0, \pm 1\} ^{\{ y_{0}, y_{1}\} } \setminus \left\{ \begin{bmatrix} 1 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 1 \end{bmatrix} \right\} \). Consider two cases.

    1. If \(D_{0}'' = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\), then by item 2 we have \(D'' (i, Y_{\ell }) = c_{0}'' (i) \cdot d_{0}'' + (-c_{1}'' (i)) \cdot d_{1}''\). By considering all possible cases for \(c_{0}'' (i)\) and \(c_{1}'' (i)\), we conclude that \(D'' (i, Y_{\ell }) \in \{ 0, \pm d_{0}'', \pm d_{1}'', \pm d_{2}''\} \).

    2. If \(D_{0}'' = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\), then by item 2 we have \(D'' (i, Y_{\ell }) = c_{0}'' (i) \cdot d_{0}'' + (c_{1}'' (i) - c_{0}'' (i)) \cdot d_{1}''\). By considering all possible cases for \(c_{0}'' (i)\) and \(c_{1}'' (i)\), we conclude that \(D'' (i, Y_{\ell }) \in \{ 0, \pm d_{0}'', \pm d_{1}'', \pm d_{2}''\} \).

  5. By Lemma 55.5, \(\begin{bmatrix} A_{\ell }” \\ d_{0}” \\ d_{1}” \\ d_{2}” \end{bmatrix}\) is TU. Since TUness is preserved under adjoining zero rows, copies of existing rows, and multiplying rows by \(\pm 1\) factors, \(\begin{bmatrix} A_{\ell }” \\ 0 \\ \pm d_{0}” \\ \pm d_{1}” \\ \pm d_{2}” \end{bmatrix}\) is also TU. By item 4, \(\begin{bmatrix} A_{\ell }” \\ D” \end{bmatrix}\) is a submatrix of the latter matrix, hence it is also TU.

4.4 Proof of Regularity

Definition 57

Let \(X_{\ell }\), \(Y_{\ell }\), \(X_{r}\), \(Y_{r}\) be sets and let \(c_{0}, c_{1} \in \mathbb {Q}^{X_{r}}\) be column vectors such that for every \(i \in X_{r}\) we have \(c_{0} (i), \ c_{1} (i), \ c_{0} (i) - c_{1} (i) \in \{ 0, \pm 1\} \). Define \(\mathcal{C} (X_{\ell }, Y_{\ell }, X_{r}, Y_{r}; c_{0}, c_{1})\) to be the family of matrices of the form \(\begin{bmatrix} A_{\ell } & 0 \\ D & A_{r} \end{bmatrix}\) where \(A_{\ell } \in \mathbb {Q}^{X_{\ell } \times Y_{\ell }}\), \(A_{r} \in \mathbb {Q}^{X_{r} \times Y_{r}}\), and \(D \in \mathbb {Q}^{X_{r} \times Y_{\ell }}\) are such that:

  1. for every \(j \in Y_{\ell }\), \(D (X_{r}, j) \in \{ 0, \pm c_{0}, \pm c_{1}, \pm (c_{0} - c_{1})\} \),

  2. \(\begin{bmatrix} c_{0} & c_{1} & c_{0} - c_{1} & A_{r} \end{bmatrix}\) is TU,

  3. \(\begin{bmatrix} A_{\ell } \\ D \end{bmatrix}\) is TU.

Let \(B''\) be from Definition 52. Then \(B'' \in \mathcal{C} (X_{\ell }, Y_{\ell }, X_{r}, Y_{r}; c_{0}'', c_{1}'')\) where \(c_{0}'' = B'' (X_{r}, y_{0})\) and \(c_{1}'' = B'' (X_{r}, y_{1})\).

Proof

Recall that \(c_{0}'' - c_{1}'' \in \{ 0, \pm 1\} ^{X_{r}}\) by Lemma 56.1, so \(\mathcal{C} (X_{\ell }, Y_{\ell }, X_{r}, Y_{r}; c_{0}'', c_{1}'')\) is well-defined. To see that \(B'' \in \mathcal{C} (X_{\ell }, Y_{\ell }, X_{r}, Y_{r}; c_{0}'', c_{1}'')\), note that all properties from Definition 57 are satisfied: property 1 holds by Lemma 56.3, property 2 holds by Lemma 54.5, and property 3 holds by Lemma 56.5.

Let \(C \in \mathcal{C} (X_{\ell }, Y_{\ell }, X_{r}, Y_{r}; c_{0}, c_{1})\) from Definition 57. Let \(x \in X_{\ell }\) and \(y \in Y_{\ell }\) be such that \(A_{\ell } (x, y) \neq 0\), and let \(C'\) be the result of performing a short tableau pivot in \(C\) on \((x, y)\). Then \(C' \in \mathcal{C} (X_{\ell }, Y_{\ell }, X_{r}, Y_{r}; c_{0}, c_{1})\).

Proof

Our goal is to show that \(C'\) satisfies all properties from Definition 57. Let \(C' = \begin{bmatrix} C_{11}’ & C_{12}’ \\ C_{21}’ & C_{22}’ \end{bmatrix}\), and let \(\begin{bmatrix} A_{\ell }’ \\ D’ \end{bmatrix}\) be the result of performing a short tableau pivot on \((x, y)\) in \(\begin{bmatrix} A_{\ell } \\ D \end{bmatrix}\). Observe the following.

  • By Lemma 13, \(C_{11}' = A_{\ell }'\), \(C_{12}' = 0\), \(C_{21}' = D'\), and \(C_{22}' = A_{r}\).

  • Since \(\begin{bmatrix} A_{\ell } \\ D \end{bmatrix}\) is TU by property 3 for \(C\), all entries of \(A_{\ell }\) are in \(\{ 0, \pm 1\} \).

  • \(A_{\ell } (x, y) \in \{ \pm 1\} \), as \(A_{\ell } (x, y) \in \{ 0, \pm 1\} \) by the above observation and \(A_{\ell } (x, y) \neq 0\) by the assumption.

  • Since \(\begin{bmatrix} A_{\ell } \\ D \end{bmatrix}\) is TU by property 3 for \(C\), and since pivoting preserves TUness, \(\begin{bmatrix} A_{\ell }’ \\ D’ \end{bmatrix}\) is also TU.

These observations immediately imply properties 2 and 3 for \(C'\). Indeed, property 2 holds for \(C'\), since \(C_{22}' = A_{r}\) and \(\begin{bmatrix} c_{0} & c_{1} & c_{0} - c_{1} & A_{r} \end{bmatrix}\) is TU by property 2 for \(C\). On the other hand, property 3 follows from \(C_{11}' = A_{\ell }'\), \(C_{21}' = D'\), and \(\begin{bmatrix} A_{\ell }’ \\ D’ \end{bmatrix}\) being TU. Thus, it only remains to show that \(C'\) satisfies property 1. Let \(j \in Y_{r}\). Our goal is to prove that \(D' (X_{r}, j) \in \{ 0, \pm c_{0}, \pm c_{1}, \pm (c_{0} - c_{1})\} \).

Suppose \(j = y\). By the pivot formula, \(D' (X_{r}, y) = -\frac{D (X_{r}, y)}{A_{\ell } (x, y)}\). Since \(D (X_{r}, y) \in \{ 0, \pm c_{0}, \pm c_{1}, \pm (c_{0} - c_{1})\} \) by property 1 for \(C\) and since \(A_{\ell } (x, y) \in \{ \pm 1\} \), we get \(D' (X_{r}, y) \in \{ 0, \pm c_{0}, \pm c_{1}, \pm (c_{0} - c_{1})\} \).

Now suppose \(j \in Y_{\ell } \setminus \{ y\} \). By the pivot formula, \(D' (X_{r}, j) = D (X_{r}, j) - \frac{A_{\ell } (x, j)}{A_{\ell } (x, y)} \cdot D (X_{r}, y)\). Here \(D (X_{r}, j), \ D (X_{r}, y) \in \{ 0, \pm c_{0}, \pm c_{1}, \pm (c_{0} - c_{1})\} \) by property 1 for \(C\), and \(A_{\ell } (x, j) \in \{ 0, \pm 1\} \) and \(A_{\ell } (x, y) \in \{ \pm 1\} \) by the prior observations. Perform an exhaustive case distinction on \(D (X_{r}, j)\), \(D (X_{r}, y)\), \(A_{\ell } (x, j)\), and \(A_{\ell } (x, y)\). In every case, we can show that either \(\begin{bmatrix} A_{\ell } (x, y) & A_{\ell } (x, j) \\ D (X_{r}, y) & D (X_{r}, j) \end{bmatrix}\) contains a submatrix with determinant not in \(\{ 0, \pm 1\} \), which contradicts TUness of \(\begin{bmatrix} A_{\ell } \\ D \end{bmatrix}\), or that \(D' (X_{r}, j) \in \{ 0, \pm c_{0}, \pm c_{1}, \pm (c_{0} - c_{1})\} \), as desired. (Todo: need details?)

Let \(C \in \mathcal{C} (X_{\ell }, Y_{\ell }, X_{r}, Y_{r}; c_{0}, c_{1})\) from Definition 57. Then \(C\) is TU.

Proof

By Lemma 7, it suffices to show that \(C\) is \(k\)-PU for every \(k \in \mathbb {N}\). We prove this claim by induction on \(k\). The base case with \(k = 1\) holds, since properties 2 and 3 in Definition 57 imply that \(A_{\ell }\), \(A_{r}\), and \(D\) are TU, so all their entries of \(C = \begin{bmatrix} A_{\ell } & 0 \\ D & A_{r} \end{bmatrix}\) are in \(\{ 0, \pm 1\} \), as desired.

Suppose that for some \(k \in \mathbb {N}\) we know that every \(C' \in \mathcal{C} (X_{\ell }, Y_{\ell }, X_{r}, Y_{r}; c_{0}, c_{1})\) is \(k\)-PU. Our goal is to show that \(C\) is \((k + 1)\)-PU, i.e., that every \((k + 1) \times (k + 1)\) submatrix \(S\) of \(C\) has \(\det V \in \{ 0, \pm 1\} \).

First, suppose that \(V\) has no rows in \(X_{\ell }\). Then \(V\) is a submatrix of \(\begin{bmatrix} D & A_{r} \end{bmatrix}\), which is TU by property 2 in Definition 57, so \(\det V \in \{ 0, \pm 1\} \). Thus, we may assume that \(S\) contains a row \(x_{\ell } \in X_{\ell }\).

Next, note that without loss of generality we may assume that there exists \(y_{\ell } \in Y_{\ell }\) such that \(V (x_{\ell }, y_{\ell }) \neq 0\). Indeed, if \(V (x_{\ell }, y) = 0\) for all \(y\), then \(\det V = 0\) and we are done, and \(V (x_{\ell }, y) = 0\) holds whenever \(y \in Y_{r}\).

Since \(C\) is \(1\)-PU, all entries of \(V\) are in \(\{ 0, \pm 1\} \), and hence \(V (x_{\ell }, y_{\ell }) \in \{ \pm 1\} \). Thus, by Lemma 14, performing a short tableau pivot in \(V\) on \((x_{\ell }, y_{\ell })\) yields a matrix that contains a \(k \times k\) submatrix \(S''\) such that \(|\det V| = |\det V''|\). Since \(V\) is a submatrix of \(C\), matrix \(V''\) is a submatrix of the matrix \(C'\) resulting from performing a short tableau pivot in \(C\) on the same entry \((x_{\ell }, y_{\ell })\). By Lemma 59, we have \(C' \in \mathcal{C} (X_{\ell }, Y_{\ell }, X_{r}, Y_{r}; c_{0}, c_{1})\). Thus, by the inductive hypothesis applied to \(V''\) and \(C'\), we have \(\det V'' \in \{ 0, \pm 1\} \). Since \(|\det V| = |\det V''|\), we conclude that \(\det V \in \{ 0, \pm 1\} \).

\(B''\) from Definition 52 is TU.

Proof

Combine the results of Lemmas 58 and 60.

Let \(M\) be a \(3\)-sum of regular matroids \(M_{\ell }\) and \(M_{r}\). Then \(M\) is also regular.

Proof

Let \(B_{\ell }\), \(B_{r}\), and \(B\) be standard \(\mathbb {Z}_{2}\) representation matrices from Definition 47. Since \(M_{\ell }\) and \(M_{r}\) are regular, by Lemma 34, \(B_{\ell }\) and \(B_{r}\) have TU signings. Then the canonical signing \(B''\) from Definition 52 is a TU signing of \(B\). Indeed, \(B''\) is a signing of \(B\) by Lemma 53, and \(B''\) is TU by Lemma 61. Thus, \(M\) is regular by Lemma 34.