Home

Dependencies

Legend
Boxes
definitions
Ellipses
theorems and lemmas
Blue border
the statement of this result is ready to be formalized; all prerequisites are done
Orange border
the statement of this result is not ready to be formalized; the blueprint needs more work
Blue background
the proof of this result is ready to be formalized; all prerequisites are done
Green border
the statement of this result is formalized
Green background
the proof of this result is formalized
Dark green background
the proof of this result and all its ancestors are formalized
prop:6.3.11 6.3.11 prop:6.3.14 6.3.14 prop:6.3.11->prop:6.3.14 prop:6.3.13 6.3.13 prop:6.3.11->prop:6.3.13 lem:6.3.15 6.3.15 prop:6.3.14->lem:6.3.15 prop:6.3.13->lem:6.3.15 lem:6.3.17 6.3.17 lem:6.3.15->lem:6.3.17 lem:6.3.16 6.3.16 lem:6.3.15->lem:6.3.16 thm:6.3.18 6.3.18 lem:6.3.17->thm:6.3.18 lem:6.3.16->thm:6.3.18 lem:6.3.19 6.3.19 thm:6.3.18->lem:6.3.19 thm:6.3.20 6.3.20 lem:6.3.19->thm:6.3.20 thm:6.4.1 6.4.1 thm:6.3.20->thm:6.4.1 cor:6.3.24 6.3.24 thm:6.3.20->cor:6.3.24 thm:11.3.10 11.3.10 thm:11.3.12 11.3.12 thm:11.3.10->thm:11.3.12 thm:11.3.14.seymour_hard 11.3.14.seymour_hard thm:11.3.12->thm:11.3.14.seymour_hard lem:3.3.20 3.3.20 lem:6.2.6 6.2.6 lem:3.3.20->lem:6.2.6 lem:6.2.6->thm:6.4.1 thm:7.2.1.b 7.2.1.b thm:6.4.1->thm:7.2.1.b thm:7.2.1.a 7.2.1.a thm:6.4.1->thm:7.2.1.a thm:7.3.1.b 7.3.1.b thm:7.2.1.b->thm:7.3.1.b cor:7.2.10.b 7.2.10.b thm:7.2.1.b->cor:7.2.10.b thm:11.3.2 11.3.2 thm:7.2.1.a->thm:11.3.2 thm:7.3.1.a 7.3.1.a thm:7.2.1.a->thm:7.3.1.a lem:10.3.1 10.3.1 thm:7.2.1.a->lem:10.3.1 cor:7.2.10.a 7.2.10.a thm:7.2.1.a->cor:7.2.10.a def:matroid matroid def:isomorphism isomorphism def:6.3.3 6.3.3 def:isomorphism->def:6.3.3 def:splitter splitter def:isomorphism->def:splitter def:6.3.2 6.3.2 def:isomorphism->def:6.3.2 thm:11.3.14.seymour_easy 11.3.14.seymour_easy def:isomorphism->thm:11.3.14.seymour_easy def:6.3.3->lem:6.3.19 prop:6.3.21 6.3.21 def:6.3.3->prop:6.3.21 prop:6.3.23 6.3.23 def:6.3.3->prop:6.3.23 prop:6.3.22 6.3.22 def:6.3.3->prop:6.3.22 def:splitter->thm:7.2.1.b def:splitter->thm:7.2.1.a def:6.3.2->prop:6.3.11 prop:6.3.12 6.3.12 def:6.3.2->prop:6.3.12 prop:6.3.21->thm:6.3.20 prop:6.3.23->thm:6.3.20 prop:6.3.22->thm:6.3.20 prop:6.3.12->cor:6.3.24 thm:11.3.2->thm:11.3.14.seymour_hard prop:7.3.4.obs 7.3.4.obs thm:7.3.1.b->prop:7.3.4.obs thm:7.3.3.binary 7.3.3.binary thm:7.3.1.b->thm:7.3.3.binary prop:7.2.1_from_7.3.1 7.2.1_from_7.3.1 thm:7.3.1.b->prop:7.2.1_from_7.3.1 cor:7.3.2.b 7.3.2.b thm:7.3.1.b->cor:7.3.2.b thm:7.3.4 7.3.4 prop:7.3.4.obs->thm:7.3.4 thm:7.3.3 7.3.3 cor:7.3.2.b->thm:7.3.3 thm:10.3.11 10.3.11 thm:7.3.4->thm:10.3.11 cor:7.3.5 7.3.5 thm:7.3.4->cor:7.3.5 thm:10.2.11.if 10.2.11.if thm:7.3.3->thm:10.2.11.if thm:7.2.11.b 7.2.11.b cor:7.2.10.b->thm:7.2.11.b thm:7.3.1.a->prop:7.3.4.obs thm:7.3.1.a->thm:7.3.3.binary thm:7.3.1.a->prop:7.2.1_from_7.3.1 cor:7.3.2.a 7.3.2.a thm:7.3.1.a->cor:7.3.2.a thm:10.4.1.if 10.4.1.if lem:10.3.1->thm:10.4.1.if thm:7.2.11.a 7.2.11.a cor:7.2.10.a->thm:7.2.11.a thm:10.3.11->thm:10.4.1.if thm:10.4.1.if->thm:11.3.14.seymour_hard cor:6.3.24->thm:11.3.10 def:parallel_elems parallel_elems def:parallel_elems->lem:6.2.6 def:regular_matroid regular_matroid def:regular_matroid->thm:11.3.12 def:regular_matroid->thm:11.3.2 def:regular_matroid->lem:10.3.1 thm:10.4.1.only_if 10.4.1.only_if def:regular_matroid->thm:10.4.1.only_if census sec 3.3 census sec 3.3 def:regular_matroid->census sec 3.3 thm:10.2.11.only_if 10.2.11.only_if def:regular_matroid->thm:10.2.11.only_if cor:11.2.8 11.2.8 def:regular_matroid->cor:11.2.8 lem:10.3.6 10.3.6 def:regular_matroid->lem:10.3.6 lem:11.2.1 11.2.1 def:regular_matroid->lem:11.2.1 census sec 3.3->thm:10.2.11.if lem:11.2.9 11.2.9 cor:11.2.8->lem:11.2.9 lem:10.3.6->thm:10.3.11 thm:11.2.10 11.2.10 lem:11.2.1->thm:11.2.10 thm:10.2.11.if->thm:10.4.1.if lem:11.2.9->thm:11.2.10 thm:11.2.10->thm:11.3.14.seymour_easy cor:11.2.12 11.2.12 thm:11.2.10->cor:11.2.12 def:k_conn k_conn def:k_conn->lem:3.3.20 def:k_conn->def:splitter def:k_conn->thm:10.4.1.only_if def:k_conn->census sec 3.3 def:k_conn->lem:10.3.6 lem:8.2.6 8.2.6 def:k_conn->lem:8.2.6 lem:5.2.4 5.2.4 def:k_conn->lem:5.2.4 lem:8.3.12 8.3.12 def:k_conn->lem:8.3.12 lem:5.2.11 5.2.11 def:k_conn->lem:5.2.11 lem:8.2.7 8.2.7 lem:8.2.6->lem:8.2.7 lem:5.2.4->thm:6.4.1 lem:8.3.12->thm:11.3.14.seymour_hard cor:5.2.15 5.2.15 lem:5.2.11->cor:5.2.15 lem:8.2.7->thm:10.2.11.if cor:5.2.15->thm:7.3.3 thm:7.4.1 7.4.1 cor:5.2.15->thm:7.4.1 cor:7.3.5->thm:7.4.1 thm:7.4.1->thm:10.2.11.if thm:Kuratowski Kuratowski thm:7.4.1->thm:Kuratowski def:2_sum 2_sum def:2_sum->lem:11.2.1 def:2_sum->lem:8.2.6 def:1_elem_addition 1_elem_addition def:1_elem_addition->thm:7.3.4 def:tu_matrix tu_matrix def:tu_matrix->def:regular_matroid def:1_elem_ext 1_elem_ext def:1_elem_ext->lem:6.2.6 def:1_elem_ext->cor:6.3.24 def:1_elem_ext->lem:10.3.6 def:1_elem_ext->lem:5.2.4 def:1_sum 1_sum def:1_sum->lem:11.2.1 lem:8.2.2 8.2.2 def:1_sum->lem:8.2.2 lem:8.2.2->thm:10.2.11.if def:Delta_sum Delta_sum def:Delta_sum->cor:11.2.12 prop:5.2.9 5.2.9 lem:5.2.10 5.2.10 prop:5.2.9->lem:5.2.10 lem:5.2.10->lem:5.2.11 prop:5.2.8 5.2.8 prop:5.2.8->lem:5.2.10 lem:2.3.14 2.3.14 lem:2.3.14->lem:8.3.12 def:R10 R10 def:R10->thm:11.3.14.seymour_easy def:R10->thm:10.3.11 prop:10.2.8 10.2.8 def:R10->prop:10.2.8 prop:10.2.8->thm:10.4.1.only_if prop:11.3.3 11.3.3 prop:10.2.8->prop:11.3.3 prop:11.3.3->thm:11.3.2 def:M_K_3_3 M_K_3_3 def:M_K_3_3->lem:10.3.1 def:M_K_3_3->thm:7.2.11.a def:M_K_3_3->thm:10.2.11.only_if def:M_K_3_3->lem:10.3.6 def:M_K_3_3->thm:7.4.1 def:1_elem_expansion 1_elem_expansion def:1_elem_expansion->thm:7.3.4 prop:8.3.10 8.3.10 prop:8.3.10->lem:8.3.12 prop:8.5.3 8.5.3 prop:8.3.10->prop:8.5.3 lem:11.2.7 11.2.7 prop:8.5.3->lem:11.2.7 lem:11.2.7->cor:11.2.8 switching op sec 3 switching op sec 3 switching op sec 3->lem:8.2.7 prop:6.2.3 6.2.3 prop:6.2.5 6.2.5 prop:6.2.3->prop:6.2.5 prop:6.2.5->prop:6.3.11 prop:6.2.5->prop:6.3.12 def:wheel wheel def:wheel->thm:7.2.1.b def:wheel->thm:7.2.1.a def:wheel->census sec 3.3 def:wheel->prop:5.2.9 def:wheel->prop:5.2.8 def:M_W_3 M_W_3 def:M_W_3->thm:7.2.11.b def:M_W_3->lem:5.2.11 def:M_W_4 M_W_4 def:M_W_4->thm:7.2.11.b def:graphic_matroid graphic_matroid def:graphic_matroid->thm:11.3.14.seymour_easy def:graphic_matroid->thm:7.2.11.b def:graphic_matroid->thm:10.3.11 def:graphic_matroid->thm:7.2.11.a def:graphic_matroid->thm:10.4.1.only_if thm:3.2.25.a 3.2.25.a def:graphic_matroid->thm:3.2.25.a thm:3.2.25.a->lem:8.2.2 thm:3.2.25.b 3.2.25.b thm:3.2.25.a->thm:3.2.25.b thm:3.2.25.b->lem:8.2.7 prop:8.2.3 8.2.3 prop:8.2.4 8.2.4 prop:8.2.3->prop:8.2.4 prop:8.2.4->lem:11.2.1 prop:8.2.4->lem:8.2.6 prop:11.3.5 11.3.5 prop:11.3.5->thm:11.3.2 def:2_elem_ext 2_elem_ext def:2_elem_ext->lem:6.2.6 def:2_elem_ext->cor:6.3.24 def:Y_sum Y_sum def:Y_sum->cor:11.2.12 def:self_dual_matroid self_dual_matroid def:F7 F7 def:F7->census sec 3.3 prop:10.2.4 10.2.4 def:F7->prop:10.2.4 prop:10.2.4->thm:10.2.11.if prop:10.2.4->prop:11.3.5 prop:6.2.1 6.2.1 prop:6.2.1->prop:6.2.3 prop:8.2.1 8.2.1 prop:8.2.1->lem:11.2.1 prop:8.3.2 8.3.2 prop:8.3.9 8.3.9 prop:8.3.2->prop:8.3.9 prop:8.3.9->prop:8.3.10 prop:9.2.14 9.2.14 prop:11.3.11 11.3.11 prop:9.2.14->prop:11.3.11 prop:11.3.11->thm:11.3.12 def:M_K_5 M_K_5 def:M_K_5->lem:10.3.1 def:M_K_5->thm:7.2.11.a def:M_K_5->thm:10.2.11.only_if def:M_K_5->thm:7.4.1 def:planar_matroid planar_matroid def:planar_matroid->thm:10.2.11.only_if def:planar_matroid->lem:8.2.7 def:planar_matroid->thm:7.4.1 def:planar_matroid->lem:8.2.2 def:loop loop def:loop->lem:6.2.6 def:binary_matroid binary_matroid def:binary_matroid->def:6.3.3 def:binary_matroid->def:splitter def:binary_matroid->def:6.3.2 def:binary_matroid->def:regular_matroid def:binary_matroid->lem:8.3.12 def:binary_matroid->lem:8.2.2 def:binary_matroid->lem:5.2.10 def:binary_matroid->prop:6.2.1 lem:3.3.12 3.3.12 def:binary_matroid->lem:3.3.12 prop:3.3.17 3.3.17 def:binary_matroid->prop:3.3.17 lem:3.3.12->lem:5.2.4 prop:3.3.17->lem:3.3.20 prop:3.3.18 3.3.18 prop:3.3.17->prop:3.3.18 lem:3.3.19 3.3.19 prop:3.3.18->lem:3.3.19 lem:3.3.19->lem:8.2.6 def:minor minor def:minor->def:6.3.3 def:minor->def:splitter def:minor->def:6.3.2 def:minor->thm:10.4.1.only_if def:minor->thm:10.2.11.only_if def:minor->lem:5.2.10 def:minor->prop:6.2.1 def:minor->lem:3.3.12 def:separation_algorithm separation_algorithm def:separation_algorithm->prop:6.3.14 def:separation_algorithm->prop:6.3.13 def:F7_dual F7_dual def:k_sep k_sep def:k_sep->def:6.3.3 def:k_sep->def:6.3.2 def:k_sep->lem:5.2.11 def:k_sep->thm:3.2.25.a def:k_sep->prop:8.2.3 def:k_sep->prop:6.2.1 def:k_sep->prop:8.2.1 def:k_sep->prop:3.3.18 prop:8.3.1 8.3.1 def:k_sep->prop:8.3.1 prop:8.3.1->prop:8.3.2 thm:Menger Menger thm:Menger->thm:10.3.11 thm:Menger->thm:10.2.11.if def:contraction contraction def:contraction->thm:11.3.2 def:series_elems series_elems def:series_elems->lem:6.2.6 def:cographic_matroid cographic_matroid def:cographic_matroid->thm:11.3.14.seymour_easy def:cographic_matroid->thm:10.3.11 def:cographic_matroid->thm:10.4.1.only_if def:R12 R12 def:R12->thm:11.3.10 def:R12->thm:10.3.11 def:R12->prop:9.2.14 prop:10.2.9 10.2.9 def:R12->prop:10.2.9 prop:10.2.9->thm:11.3.12 prop:10.2.9->thm:10.4.1.only_if def:M_K_3_3_dual M_K_3_3_dual def:M_K_3_3_dual->thm:10.2.11.only_if lem:3.2.48 3.2.48 def:M_K_3_3_dual->lem:3.2.48 prop:10.2.6 10.2.6 def:M_K_3_3_dual->prop:10.2.6 lem:3.2.48->thm:7.4.1 prop:10.2.6->thm:10.2.11.if def:3_sum 3_sum def:3_sum->prop:8.3.2 prop:8.3.11 8.3.11 def:3_sum->prop:8.3.11 prop:8.3.11->prop:8.5.3 def:Delta_Y_exchange Delta_Y_exchange prop:4.4.6 4.4.6 def:Delta_Y_exchange->prop:4.4.6 prop:4.4.5 4.4.5 def:Delta_Y_exchange->prop:4.4.5 prop:4.4.5->prop:8.5.3 def:gap gap def:gap->thm:7.3.1.b def:gap->thm:7.3.1.a def:deletion deletion def:coloop coloop def:coloop->lem:6.2.6 def:M_K_5_dual M_K_5_dual def:M_K_5_dual->thm:10.2.11.only_if def:M_K_5_dual->lem:3.2.48 def:3_elem_ext 3_elem_ext def:3_elem_ext->lem:6.2.6 def:dual_matroid dual_matroid