Documentation

Seymour.Sum2

This file contains everything about 2-sum of binary matroids.

@[reducible, inline]
abbrev Matrix_2sumComposition {α : Type u_1} {β : Type u_2} [Semiring β] {X₁ : Set α} {Y₁ : Set α} {X₂ : Set α} {Y₂ : Set α} (A₁ : Matrix (↑X₁) (↑Y₁) β) (x : Y₁β) (A₂ : Matrix (↑X₂) (↑Y₂) β) (y : X₂β) :
Matrix (X₁ X₂) (Y₁ Y₂) β

Matrix-level 2-sum for matroids defined by their standard representation matrices; does not check legitimacy.

Equations
Instances For
    def StandardRepresentation_2sum {α : Type u_1} [DecidableEq α] {M₁ : StandardRepresentation α} {M₂ : StandardRepresentation α} {a : α} (ha : M₁.X M₂.Y = {a}) (hXY : M₂.X M₁.Y) :

    StandardRepresentation-level 2-sum of two matroids. The second part checks legitimacy: the ground sets of M₁ and M₂ are disjoint except for the element a ∈ M₁.X ∩ M₂.Y, and the bottom-most row of M₁ and the left-most column of M₂ are each nonzero vectors.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      Binary matroid M is a result of 2-summing M₁ and M₂ in some way.

      Equations
      Instances For
        theorem StandardRepresentation.Is2sumOf.disjoXX {α : Type u_1} [DecidableEq α] {M₁ : StandardRepresentation α} {M₂ : StandardRepresentation α} {M : StandardRepresentation α} (hM : M.Is2sumOf M₁ M₂) :
        M₁.X M₂.X
        theorem StandardRepresentation.Is2sumOf.disjoYY {α : Type u_1} [DecidableEq α] {M₁ : StandardRepresentation α} {M₂ : StandardRepresentation α} {M : StandardRepresentation α} (hM : M.Is2sumOf M₁ M₂) :
        M₁.Y M₂.Y
        theorem StandardRepresentation.Is2sumOf.interXY {α : Type u_1} [DecidableEq α] {M₁ : StandardRepresentation α} {M₂ : StandardRepresentation α} {M : StandardRepresentation α} (hM : M.Is2sumOf M₁ M₂) :
        ∃ (a : α), M₁.X M₂.Y = {a}
        theorem StandardRepresentation.Is2sumOf.disjoYX {α : Type u_1} [DecidableEq α] {M₁ : StandardRepresentation α} {M₂ : StandardRepresentation α} {M : StandardRepresentation α} (hM : M.Is2sumOf M₁ M₂) :
        M₁.Y M₂.X
        theorem StandardRepresentation.Is2sumOf.indep {α : Type u_1} [DecidableEq α] {M₁ : StandardRepresentation α} {M₂ : StandardRepresentation α} {M : StandardRepresentation α} (hM : M.Is2sumOf M₁ M₂) :
        ∃ (a : α) (ha : M₁.X M₂.Y = {a}), let A₁ := M₁.B .elem; let A₂ := fun (x : M₂.X) => M₂.B x .elem; let x := M₁.B a, ; let y := fun (x : M₂.X) => M₂.B x a, ; (Matrix_2sumComposition A₁ x A₂ y).toMatrixUnionUnion.IndepCols = M.toMatroid.Indep
        theorem Matrix_2sumComposition_TU {α : Type u_1} [DecidableEq α] {X₁ : Set α} {Y₁ : Set α} {X₂ : Set α} {Y₂ : Set α} {A₁ : Matrix X₁ Y₁ } {A₂ : Matrix X₂ Y₂ } (hA₁ : A₁.TU) (hA₂ : A₂.TU) (x : Y₁) (y : X₂) :
        (Matrix_2sumComposition A₁ x A₂ y).TU
        theorem Matrix_2sumComposition_TU_left {α : Type u_1} [DecidableEq α] {X₁ : Set α} {Y₁ : Set α} {X₂ : Set α} {Y₂ : Set α} {A₁ : Matrix X₁ Y₁ } {A₂ : Matrix X₂ Y₂ } {x : Y₁} {y : X₂} (hA : (Matrix_2sumComposition A₁ x A₂ y).TU) :
        A₁.TU
        theorem Matrix_2sumComposition_TU_right {α : Type u_1} [DecidableEq α] {X₁ : Set α} {Y₁ : Set α} {X₂ : Set α} {Y₂ : Set α} {A₁ : Matrix X₁ Y₁ } {A₂ : Matrix X₂ Y₂ } {x : Y₁} {y : X₂} (hA : (Matrix_2sumComposition A₁ x A₂ y).TU) :
        A₂.TU
        theorem StandardRepresentation_2sum_B {α : Type u_1} [DecidableEq α] {M₁ : StandardRepresentation α} {M₂ : StandardRepresentation α} {a : α} (ha : M₁.X M₂.Y = {a}) (hXY : M₂.X M₁.Y) :
        ∃ (haX₁ : a M₁.X) (haY₂ : a M₂.Y), (StandardRepresentation_2sum ha hXY).1.B = (Matrix_2sumComposition (M₁.B .elem) (M₁.B a, haX₁) (fun (x : M₂.X) => M₂.B x .elem) fun (x : M₂.X) => M₂.B x a, haY₂).toMatrixUnionUnion
        theorem StandardRepresentation_2sum_isRegular {α : Type u_1} [DecidableEq α] {M₁ : StandardRepresentation α} {M₂ : StandardRepresentation α} {a : α} (ha : M₁.X M₂.Y = {a}) (hXY : M₂.X M₁.Y) (hM₁ : M₁.IsRegular) (hM₂ : M₂.IsRegular) :
        (StandardRepresentation_2sum ha hXY).1.IsRegular
        theorem StandardRepresentation_2sum_isRegular_left {α : Type u_1} [DecidableEq α] {M₁ : StandardRepresentation α} {M₂ : StandardRepresentation α} {a : α} (ha : M₁.X M₂.Y = {a}) (hXY : M₂.X M₁.Y) (hM : (StandardRepresentation_2sum ha hXY).1.IsRegular) :
        M₁.IsRegular
        theorem StandardRepresentation_2sum_isRegular_right {α : Type u_1} [DecidableEq α] {M₁ : StandardRepresentation α} {M₂ : StandardRepresentation α} {a : α} (ha : M₁.X M₂.Y = {a}) (hXY : M₂.X M₁.Y) (hM : (StandardRepresentation_2sum ha hXY).1.IsRegular) :
        M₂.IsRegular
        theorem StandardRepresentation.Is2sumOf.isRegular {α : Type u_1} [DecidableEq α] {M₁ : StandardRepresentation α} {M₂ : StandardRepresentation α} {M : StandardRepresentation α} [Fintype M₁.X] [Fintype M₁.Y] [Fintype M₂.X] [Fintype M₂.Y] (hM : M.Is2sumOf M₁ M₂) (hM₁ : M₁.IsRegular) (hM₂ : M₂.IsRegular) :
        M.IsRegular

        Any 2-sum of regular matroids is a regular matroid. This is the middle of the three parts of the easy direction of the Seymour's theorem.

        theorem StandardRepresentation.Is2sumOf.isRegular_left {α : Type u_1} [DecidableEq α] {M₁ : StandardRepresentation α} {M₂ : StandardRepresentation α} {M : StandardRepresentation α} (hMsum : M.Is2sumOf M₁ M₂) (hMreg : M.IsRegular) :
        M₁.IsRegular

        If a regular matroid is a 2-sum, then the left summand of the 2-sum is regular.

        theorem StandardRepresentation.Is2sumOf.isRegular_right {α : Type u_1} [DecidableEq α] {M₁ : StandardRepresentation α} {M₂ : StandardRepresentation α} {M : StandardRepresentation α} (hMsum : M.Is2sumOf M₁ M₂) (hMreg : M.IsRegular) :
        M₂.IsRegular

        If a regular matroid is a 2-sum, then the right summand of the 2-sum is regular.