theorem
Matroid.IsRegular.isGood_of_rankFinite
{α : Type u_1}
[DecidableEq α]
{M : Matroid α}
(hM : M.IsRegular)
(hM' : M.RankFinite)
:
M.IsGood
The hard direction of the Seymour's theorem (restricted to matroids of finite rank).
theorem
Matroid.RankFinite.isRegular_iff_isGood
{α : Type u_1}
[DecidableEq α]
{M : Matroid α}
(hM : M.RankFinite)
:
Matroid of finite rank is regular iff it can be decomposed into graphic matroids & cographics matroids & matroids isomorphic to R10 using 1-sums & 2-sums & 3-sums.