Functions to "half" Sum #
Here we study functions of type α → β₁ ⊕ β₂
that happen to contain image in only one of the half of its codomain.
noncomputable def
fn_of_sum_ne_inl
{β₁ β₂ α : Type}
{f : α → β₁ ⊕ β₂}
(hf : ∀ (a : α) (b₁ : β₁), f a ≠ ◩b₁)
:
α → β₂
Assume f : α → β₁ ⊕ β₂
never reaches β₁
values. We convert f
to α → β₂
function.
Equations
- fn_of_sum_ne_inl hf x✝ = ⋯.choose
Instances For
noncomputable def
fn_of_sum_ne_inr
{β₁ β₂ α : Type}
{f : α → β₁ ⊕ β₂}
(hf : ∀ (a : α) (b₂ : β₂), f a ≠ ◪b₂)
:
α → β₁
Assume f : α → β₁ ⊕ β₂
never reaches β₂
values. We convert f
to α → β₁
function.
Equations
- fn_of_sum_ne_inr hf x✝ = ⋯.choose
Instances For
theorem
eq_of_fn_sum_ne_inl
{β₁ β₂ α : Type}
{f : α → β₁ ⊕ β₂}
(hf : ∀ (a : α) (b₁ : β₁), f a ≠ ◩b₁)
(i : α)
:
theorem
eq_of_fn_sum_ne_inr
{β₁ β₂ α : Type}
{f : α → β₁ ⊕ β₂}
(hf : ∀ (a : α) (b₂ : β₂), f a ≠ ◪b₂)
(i : α)
: