Documentation

Seymour.Basic.FunctionToHalfSum

Functions to "half" Sum #

Here we study functions of type α → β₁ ⊕ β₂ that happen to contain image in only one of the half of its codomain.

theorem sum_ne_inl {β₁ β₂ : Type} {x : β₁ β₂} (hx₁ : ∀ (b₁ : β₁), x b₁) :
∃ (b₂ : β₂), x = b₂
theorem sum_ne_inr {β₁ β₂ : Type} {x : β₁ β₂} (hx₂ : ∀ (b₂ : β₂), x b₂) :
∃ (b₁ : β₁), x = b₁
theorem fn_sum_ne_inl {β₁ β₂ α : Type} {f : αβ₁ β₂} (hf : ∀ (a : α) (b₁ : β₁), f a b₁) (a : α) :
∃ (b₂ : β₂), f a = b₂
theorem fn_sum_ne_inr {β₁ β₂ α : Type} {f : αβ₁ β₂} (hf : ∀ (a : α) (b₂ : β₂), f a b₂) (a : α) :
∃ (b₁ : β₁), f a = b₁
noncomputable def fn_of_sum_ne_inl {β₁ β₂ α : Type} {f : αβ₁ β₂} (hf : ∀ (a : α) (b₁ : β₁), f a b₁) :
αβ₂

Assume f : α → β₁ ⊕ β₂ never reaches β₁ values. We convert f to α → β₂ function.

Equations
Instances For
    noncomputable def fn_of_sum_ne_inr {β₁ β₂ α : Type} {f : αβ₁ β₂} (hf : ∀ (a : α) (b₂ : β₂), f a b₂) :
    αβ₁

    Assume f : α → β₁ ⊕ β₂ never reaches β₂ values. We convert f to α → β₁ function.

    Equations
    Instances For
      theorem eq_of_fn_sum_ne_inl {β₁ β₂ α : Type} {f : αβ₁ β₂} (hf : ∀ (a : α) (b₁ : β₁), f a b₁) (i : α) :
      theorem eq_of_fn_sum_ne_inr {β₁ β₂ α : Type} {f : αβ₁ β₂} (hf : ∀ (a : α) (b₂ : β₂), f a b₂) (i : α) :