Documentation

Seymour.Matrix.LinearIndependenceBlock

Linear Independence and Block Matrices #

This file provides lemmas about linear independence in the context of block-like matrices.

theorem Disjoint.matrix_one_eq_fromBlocks_toMatrixUnionUnion {α : Type u_1} {R : Type u_2} [DecidableEq α] [Zero R] [One R] {Zₗ Zᵣ : Set α} [(a : α) → Decidable (a Zₗ)] [(a : α) → Decidable (a Zᵣ)] (hZZ : Zₗ Zᵣ) :
theorem Matrix.linearIndepOn_iff_fromCols_zero {α : Type u_1} {R : Type u_2} [Ring R] {X Y I : Set α} (A : Matrix (↑X) (↑Y) R) (hIX : I X X) (Y₀ : Set α) :
LinearIndepOn R A hIX.elem.range LinearIndepOn R (A 0) hIX.elem.range
theorem Matrix.linearIndepOn_iff_zero_fromCols {α : Type u_1} {R : Type u_2} [Ring R] {X Y I : Set α} (A : Matrix (↑X) (↑Y) R) (hIX : I X X) (Y₀ : Set α) :
LinearIndepOn R A hIX.elem.range LinearIndepOn R (0 A) hIX.elem.range
theorem linearIndepOn_toMatrixUnionUnion_elem_range_iff {α : Type u_1} {R : Type u_2} [Ring R] {Xₗ Yₗ Xᵣ Yᵣ I : Set α} [(a : α) → Decidable (a Xₗ)] [(a : α) → Decidable (a Yₗ)] [(a : α) → Decidable (a Xᵣ)] [(a : α) → Decidable (a Yᵣ)] (hXX : Xₗ Xᵣ) (hYY : Yₗ Yᵣ) (Aₗ : Matrix (↑Xₗ) (↑Yₗ) R) (Aᵣ : Matrix (↑Xᵣ) (↑Yᵣ) R) (hI : I Xₗ Xᵣ) (hIXₗ : I Xₗ Xₗ) (hIXᵣ : I Xᵣ Xᵣ) :
LinearIndepOn R ( Aₗ 0 0 Aᵣ).toMatrixUnionUnion hI.elem.range LinearIndepOn R Aₗ hIXₗ.elem.range LinearIndepOn R Aᵣ hIXᵣ.elem.range