Documentation

Seymour.Matroid.Operations.Sum2

@[reducible, inline]
abbrev Matrix_2sumComposition {α β : Type} [Semiring β] {X₁ Y₁ X₂ Y₂ : Set α} (A₁ : Matrix (↑X₁) (↑Y₁) β) (x : Y₁β) (A₂ : Matrix (↑X₂) (↑Y₂) β) (y : X₂β) :
Matrix (X₁ X₂) (Y₁ Y₂) β

Matrix-level 2-sum for matroids defined by their standard representation matrices; does not check legitimacy.

Equations
Instances For
    def StandardRepr_2sum {α : Type} [DecidableEq α] {a : α} {S₁ S₂ : StandardRepr α Z2} (ha : S₁.X S₂.Y = {a}) (hXY : S₂.X S₁.Y) :

    StandardRepresentation-level 2-sum of two matroids. The second part checks legitimacy: the ground sets of M₁ and M₂ are disjoint except for the element a ∈ M₁.X ∩ M₂.Y, and the bottom-most row of M₁ and the left-most column of M₂ are each nonzero vectors.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      structure Matroid.Is2sumOf {α : Type} [DecidableEq α] (M M₁ M₂ : Matroid α) :

      Binary matroid M is a result of 2-summing M₁ and M₂ in some way.

      Instances For
        theorem Matrix_2sumComposition_isTotallyUnimodular {α : Type} [DecidableEq α] {X₁ Y₁ X₂ Y₂ : Set α} {A₁ : Matrix X₁ Y₁ } {A₂ : Matrix X₂ Y₂ } (hA₁ : A₁.IsTotallyUnimodular) (hA₂ : A₂.IsTotallyUnimodular) (x : Y₁) (y : X₂) :
        (Matrix_2sumComposition A₁ x A₂ y).IsTotallyUnimodular
        theorem StandardRepr_2sum_B {α : Type} [DecidableEq α] {S₁ S₂ : StandardRepr α Z2} {a : α} (ha : S₁.X S₂.Y = {a}) (hXY : S₂.X S₁.Y) :
        ∃ (haX₁ : a S₁.X) (haY₂ : a S₂.Y), (StandardRepr_2sum ha hXY).1.B = (Matrix_2sumComposition (S₁.B .elem) (S₁.B a, haX₁) (fun (x : S₂.X) => S₂.B x .elem) fun (x : S₂.X) => S₂.B x a, haY₂).toMatrixUnionUnion
        theorem StandardRepr_2sum_hasTuSigning {α : Type} [DecidableEq α] {S₁ S₂ : StandardRepr α Z2} {a : α} (ha : S₁.X S₂.Y = {a}) (hXY : S₂.X S₁.Y) (hS₁ : S₁.HasTuSigning) (hS₂ : S₂.HasTuSigning) :
        (StandardRepr_2sum ha hXY).1.HasTuSigning
        theorem Matroid.Is2sumOf.isRegular {α : Type} [DecidableEq α] {M M₁ M₂ : Matroid α} (hM : M.Is2sumOf M₁ M₂) (hM₁ : M₁.IsRegular) (hM₂ : M₂.IsRegular) :
        M.IsRegular

        Any 2-sum of regular matroids is a regular matroid. This is the middle of the three parts of the easy direction of the Seymour's theorem.