A set S
is independent in M[A]
iff
S ⊆ Y
and S
corresponds to a linearly independent submultiset of columns in A
.
Equations
- M.IndepCols I = ∃ (hI : I ⊆ M.Y), LinearIndependent R fun (i : ↑I) (x : ↑M.X) => M.A x (hI.elem i)
Instances For
theorem
VectorMatroid.indepCols_iff_submatrix
{α R : Type}
[Semiring R]
(M : VectorMatroid α R)
(I : Set α)
:
M.IndepCols I ↔ ∃ (hI : I ⊆ M.Y), LinearIndependent (ι := ↑I) R (M.A.submatrix id hI.elem).transpose
theorem
VectorMatroid.indepCols_empty
{α R : Type}
[Semiring R]
(M : VectorMatroid α R)
:
M.IndepCols ∅
Empty set is independent.
theorem
VectorMatroid.indepCols_subset
{α R : Type}
[Semiring R]
(M : VectorMatroid α R)
(I J : Set α)
(hMJ : M.IndepCols J)
(hIJ : I ⊆ J)
:
M.IndepCols I
A subset of a linearly independent set of columns is linearly independent.
theorem
VectorMatroid.indepCols_aug
{α R : Type}
[Semiring R]
(M : VectorMatroid α R)
(I J : Set α)
(hMI : M.IndepCols I)
(hMI' : ¬Maximal M.IndepCols I)
(hMJ : Maximal M.IndepCols J)
:
A non-maximal linearly independent set of columns can be augmented with another linearly independent column.
theorem
VectorMatroid.indepCols_maximal
{α R : Type}
[Semiring R]
(M : VectorMatroid α R)
(I : Set α)
:
Matroid.ExistsMaximalSubsetProperty M.IndepCols I
Every set of columns contains a maximal independent subset of columns.
VectorMatroid
expressed as IndepMatroid
.
Equations
- M.toIndepMatroid = { E := M.Y, Indep := M.IndepCols, indep_empty := ⋯, indep_subset := ⋯, indep_aug := ⋯, indep_maximal := ⋯, subset_ground := ⋯ }
Instances For
@[simp]
theorem
VectorMatroid.toMatroid_E
{α R : Type}
[Semiring R]
(M : VectorMatroid α R)
:
M.toMatroid.E = M.Y
@[simp]
theorem
VectorMatroid.toMatroid_indep
{α R : Type}
[Semiring R]
(M : VectorMatroid α R)
:
M.toMatroid.Indep = M.IndepCols