def
Matrix.shortTableauPivot
{X Y F : Type}
[Field F]
[DecidableEq X]
[DecidableEq Y]
(A : Matrix X Y F)
(x : X)
(y : Y)
:
Matrix X Y F
The result of the pivot operation in a short tableau (without exchanging the indices that define the pivot).
This definition makes sense only if A x y
is nonzero.
Equations
Instances For
theorem
Matrix.shortTableauPivot_row_pivot
{X Y F : Type}
[Field F]
[DecidableEq X]
[DecidableEq Y]
(A : Matrix X Y F)
(x : X)
(y : Y)
:
theorem
Matrix.shortTableauPivot_row_other
{X Y F : Type}
[Field F]
[DecidableEq X]
[DecidableEq Y]
(A : Matrix X Y F)
(x : X)
(y : Y)
(i : X)
(hix : i ≠ x)
:
theorem
Matrix.IsTotallyUnimodular.shortTableauPivot
{X Y F : Type}
[DecidableEq X]
[DecidableEq Y]
[Field F]
{A : Matrix X Y F}
(hA : A.IsTotallyUnimodular)
{x : X}
{y : Y}
(hxy : A x y ≠ 0)
:
(A.shortTableauPivot x y).IsTotallyUnimodular
Pivoting preserves total unimodularity.