Documentation

Seymour.ForMathlib.MatrixLI

theorem Matrix.exists_submatrix_rank {X Y F : Type} [DecidableEq X] [DecidableEq Y] [Fintype X] [Fintype Y] [Field F] (A : Matrix X Y F) :
∃ (r : Fin A.rankX), (A.submatrix r id).rank = A.rank
theorem Matrix.linearIndependent_iff_exists_submatrix_unit {X Y F : Type} [DecidableEq X] [DecidableEq Y] [Fintype X] [Fintype Y] [Field F] (A : Matrix X Y F) :
LinearIndependent F A ∃ (f : XY), IsUnit (A.submatrix id f)

Rows of a matrix are linearly independent iff the matrix contains a nonsigular square submatrix of full height.

theorem Matrix.linearIndependent_iff_exists_submatrix_det {X Y F : Type} [DecidableEq X] [DecidableEq Y] [Fintype X] [Fintype Y] [Field F] (A : Matrix X Y F) :
LinearIndependent F A ∃ (f : XY), (A.submatrix id f).det 0

Rows of a matrix are linearly independent iff the matrix contains a square submatrix of full height with nonzero det.