Documentation

Mathlib.MeasureTheory.Function.LpSeminorm.CompareExp

Compare Lp seminorms for different values of p #

In this file we compare MeasureTheory.eLpNorm' and MeasureTheory.eLpNorm for different exponents.

theorem MeasureTheory.eLpNorm'_le_eLpNorm'_mul_rpow_measure_univ {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {f : αE} {p q : } (hp0_lt : 0 < p) (hpq : p q) (hf : MeasureTheory.AEStronglyMeasurable f μ) :
theorem MeasureTheory.eLpNorm_le_eLpNorm_mul_rpow_measure_univ {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {f : αE} {p q : ENNReal} (hpq : p q) (hf : MeasureTheory.AEStronglyMeasurable f μ) :
MeasureTheory.eLpNorm f p μ MeasureTheory.eLpNorm f q μ * μ Set.univ ^ (1 / p.toReal - 1 / q.toReal)
theorem MeasureTheory.Memℒp.mono_exponent {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p q : ENNReal} [MeasureTheory.IsFiniteMeasure μ] {f : αE} (hfq : MeasureTheory.Memℒp f q μ) (hpq : p q) :
@[deprecated MeasureTheory.Memℒp.mono_exponent (since := "2025-01-07")]
theorem MeasureTheory.Memℒp.memℒp_of_exponent_le {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p q : ENNReal} [MeasureTheory.IsFiniteMeasure μ] {f : αE} (hfq : MeasureTheory.Memℒp f q μ) (hpq : p q) :

Alias of MeasureTheory.Memℒp.mono_exponent.

theorem MeasureTheory.Memℒp.mono_exponent_of_measure_support_ne_top {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p q : ENNReal} {f : αE} (hfq : MeasureTheory.Memℒp f q μ) {s : Set α} (hf : xs, f x = 0) (hs : μ s ) (hpq : p q) :

If a function is supported on a finite-measure set and belongs to ℒ^p, then it belongs to ℒ^q for any q ≤ p.

@[deprecated MeasureTheory.Memℒp.mono_exponent_of_measure_support_ne_top (since := "2025-01-07")]
theorem MeasureTheory.Memℒp.memℒp_of_exponent_le_of_measure_support_ne_top {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p q : ENNReal} {f : αE} (hfq : MeasureTheory.Memℒp f q μ) {s : Set α} (hf : xs, f x = 0) (hs : μ s ) (hpq : p q) :

Alias of MeasureTheory.Memℒp.mono_exponent_of_measure_support_ne_top.


If a function is supported on a finite-measure set and belongs to ℒ^p, then it belongs to ℒ^q for any q ≤ p.

theorem MeasureTheory.eLpNorm_le_eLpNorm_top_mul_eLpNorm {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : MeasureTheory.Measure α} (p : ENNReal) (f : αE) {g : αF} (hg : MeasureTheory.AEStronglyMeasurable g μ) (b : EFG) (h : ∀ᵐ (x : α) μ, b (f x) (g x)‖₊ f x‖₊ * g x‖₊) :
MeasureTheory.eLpNorm (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.eLpNorm f μ * MeasureTheory.eLpNorm g p μ
theorem MeasureTheory.eLpNorm_le_eLpNorm_mul_eLpNorm_top {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : MeasureTheory.Measure α} (p : ENNReal) {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) (g : αF) (b : EFG) (h : ∀ᵐ (x : α) μ, b (f x) (g x)‖₊ f x‖₊ * g x‖₊) :
MeasureTheory.eLpNorm (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.eLpNorm f p μ * MeasureTheory.eLpNorm g μ
theorem MeasureTheory.eLpNorm'_le_eLpNorm'_mul_eLpNorm' {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : MeasureTheory.Measure α} {f : αE} {g : αF} {p q r : } (hf : MeasureTheory.AEStronglyMeasurable f μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) (b : EFG) (h : ∀ᵐ (x : α) μ, b (f x) (g x)‖₊ f x‖₊ * g x‖₊) (hp0_lt : 0 < p) (hpq : p < q) (hpqr : 1 / p = 1 / q + 1 / r) :
MeasureTheory.eLpNorm' (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.eLpNorm' f q μ * MeasureTheory.eLpNorm' g r μ
theorem MeasureTheory.eLpNorm_le_eLpNorm_mul_eLpNorm_of_nnnorm {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : MeasureTheory.Measure α} {f : αE} {g : αF} {p q r : ENNReal} (hf : MeasureTheory.AEStronglyMeasurable f μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) (b : EFG) (h : ∀ᵐ (x : α) μ, b (f x) (g x)‖₊ f x‖₊ * g x‖₊) (hpqr : 1 / p = 1 / q + 1 / r) :
MeasureTheory.eLpNorm (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.eLpNorm f q μ * MeasureTheory.eLpNorm g r μ

Hölder's inequality, as an inequality on the ℒp seminorm of an elementwise operation fun x => b (f x) (g x).

theorem MeasureTheory.eLpNorm_le_eLpNorm_mul_eLpNorm'_of_norm {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : MeasureTheory.Measure α} {f : αE} {g : αF} {p q r : ENNReal} (hf : MeasureTheory.AEStronglyMeasurable f μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) (b : EFG) (h : ∀ᵐ (x : α) μ, b (f x) (g x) f x * g x) (hpqr : 1 / p = 1 / q + 1 / r) :
MeasureTheory.eLpNorm (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.eLpNorm f q μ * MeasureTheory.eLpNorm g r μ

Hölder's inequality, as an inequality on the ℒp seminorm of an elementwise operation fun x => b (f x) (g x).

theorem MeasureTheory.eLpNorm_smul_le_eLpNorm_top_mul_eLpNorm {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {f : αE} (p : ENNReal) (hf : MeasureTheory.AEStronglyMeasurable f μ) (φ : α𝕜) :
theorem MeasureTheory.eLpNorm_smul_le_eLpNorm_mul_eLpNorm_top {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] (p : ENNReal) (f : αE) {φ : α𝕜} (hφ : MeasureTheory.AEStronglyMeasurable φ μ) :
theorem MeasureTheory.eLpNorm'_smul_le_mul_eLpNorm' {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p q r : } {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) {φ : α𝕜} (hφ : MeasureTheory.AEStronglyMeasurable φ μ) (hp0_lt : 0 < p) (hpq : p < q) (hpqr : 1 / p = 1 / q + 1 / r) :
theorem MeasureTheory.eLpNorm_smul_le_mul_eLpNorm {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p q r : ENNReal} {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) {φ : α𝕜} (hφ : MeasureTheory.AEStronglyMeasurable φ μ) (hpqr : 1 / p = 1 / q + 1 / r) :

Hölder's inequality, as an inequality on the ℒp seminorm of a scalar product φ • f.

theorem MeasureTheory.Memℒp.smul {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p q r : ENNReal} {f : αE} {φ : α𝕜} (hf : MeasureTheory.Memℒp f r μ) (hφ : MeasureTheory.Memℒp φ q μ) (hpqr : 1 / p = 1 / q + 1 / r) :
theorem MeasureTheory.Memℒp.smul_of_top_right {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p : ENNReal} {f : αE} {φ : α𝕜} (hf : MeasureTheory.Memℒp f p μ) (hφ : MeasureTheory.Memℒp φ μ) :
theorem MeasureTheory.Memℒp.smul_of_top_left {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p : ENNReal} {f : αE} {φ : α𝕜} (hf : MeasureTheory.Memℒp f μ) (hφ : MeasureTheory.Memℒp φ p μ) :
theorem MeasureTheory.Memℒp.mul {α : Type u_1} {x✝ : MeasurableSpace α} {𝕜 : Type u_2} [NormedRing 𝕜] {μ : MeasureTheory.Measure α} {p q r : ENNReal} {f φ : α𝕜} (hf : MeasureTheory.Memℒp f r μ) (hφ : MeasureTheory.Memℒp φ q μ) (hpqr : 1 / p = 1 / q + 1 / r) :
theorem MeasureTheory.Memℒp.mul' {α : Type u_1} {x✝ : MeasurableSpace α} {𝕜 : Type u_2} [NormedRing 𝕜] {μ : MeasureTheory.Measure α} {p q r : ENNReal} {f φ : α𝕜} (hf : MeasureTheory.Memℒp f r μ) (hφ : MeasureTheory.Memℒp φ q μ) (hpqr : 1 / p = 1 / q + 1 / r) :
MeasureTheory.Memℒp (fun (x : α) => φ x * f x) p μ

Variant of Memℒp.mul where the function is written as fun x ↦ φ x * f x instead of φ * f.

theorem MeasureTheory.Memℒp.mul_of_top_right {α : Type u_1} {x✝ : MeasurableSpace α} {𝕜 : Type u_2} [NormedRing 𝕜] {μ : MeasureTheory.Measure α} {p : ENNReal} {f φ : α𝕜} (hf : MeasureTheory.Memℒp f p μ) (hφ : MeasureTheory.Memℒp φ μ) :
theorem MeasureTheory.Memℒp.mul_of_top_right' {α : Type u_1} {x✝ : MeasurableSpace α} {𝕜 : Type u_2} [NormedRing 𝕜] {μ : MeasureTheory.Measure α} {p : ENNReal} {f φ : α𝕜} (hf : MeasureTheory.Memℒp f p μ) (hφ : MeasureTheory.Memℒp φ μ) :
MeasureTheory.Memℒp (fun (x : α) => φ x * f x) p μ

Variant of Memℒp.mul_of_top_right where the function is written as fun x ↦ φ x * f x instead of φ * f.

theorem MeasureTheory.Memℒp.mul_of_top_left {α : Type u_1} {x✝ : MeasurableSpace α} {𝕜 : Type u_2} [NormedRing 𝕜] {μ : MeasureTheory.Measure α} {p : ENNReal} {f φ : α𝕜} (hf : MeasureTheory.Memℒp f μ) (hφ : MeasureTheory.Memℒp φ p μ) :
theorem MeasureTheory.Memℒp.mul_of_top_left' {α : Type u_1} {x✝ : MeasurableSpace α} {𝕜 : Type u_2} [NormedRing 𝕜] {μ : MeasureTheory.Measure α} {p : ENNReal} {f φ : α𝕜} (hf : MeasureTheory.Memℒp f μ) (hφ : MeasureTheory.Memℒp φ p μ) :
MeasureTheory.Memℒp (fun (x : α) => φ x * f x) p μ

Variant of Memℒp.mul_of_top_left where the function is written as fun x ↦ φ x * f x instead of φ * f.

theorem MeasureTheory.Memℒp.prod {ι : Type u_1} {α : Type u_2} {𝕜 : Type u_3} {x✝ : MeasurableSpace α} [NormedCommRing 𝕜] {μ : MeasureTheory.Measure α} {f : ια𝕜} {p : ιENNReal} {s : Finset ι} (hf : is, MeasureTheory.Memℒp (f i) (p i) μ) :
MeasureTheory.Memℒp (∏ is, f i) (∑ is, (p i)⁻¹)⁻¹ μ

See Memℒp.prod' for the applied version.

theorem MeasureTheory.Memℒp.prod' {ι : Type u_1} {α : Type u_2} {𝕜 : Type u_3} {x✝ : MeasurableSpace α} [NormedCommRing 𝕜] {μ : MeasureTheory.Measure α} {f : ια𝕜} {p : ιENNReal} {s : Finset ι} (hf : is, MeasureTheory.Memℒp (f i) (p i) μ) :
MeasureTheory.Memℒp (fun (ω : α) => is, f i ω) (∑ is, (p i)⁻¹)⁻¹ μ

See Memℒp.prod for the unapplied version.