Documentation

Mathlib.MeasureTheory.Function.LpSeminorm.Basic

ℒp space #

This file describes properties of almost everywhere strongly measurable functions with finite p-seminorm, denoted by eLpNorm f p μ and defined for p:ℝ≥0∞ as 0 if p=0, (∫ ‖f a‖^p ∂μ) ^ (1/p) for 0 < p < ∞ and essSup ‖f‖ μ for p=∞.

The Prop-valued Memℒp f p μ states that a function f : α → E has finite p-seminorm and is almost everywhere strongly measurable.

Main definitions #

ℒp seminorm #

We define the ℒp seminorm, denoted by eLpNorm f p μ. For real p, it is given by an integral formula (for which we use the notation eLpNorm' f p μ), and for p = ∞ it is the essential supremum (for which we use the notation eLpNormEssSup f μ).

We also define a predicate Memℒp f p μ, requesting that a function is almost everywhere measurable and has finite eLpNorm f p μ.

This paragraph is devoted to the basic properties of these definitions. It is constructed as follows: for a given property, we prove it for eLpNorm' and eLpNormEssSup when it makes sense, deduce it for eLpNorm, and translate it in terms of Memℒp.

def MeasureTheory.eLpNorm' {α : Type u_1} {ε : Type u_2} [ENorm ε] {x✝ : MeasurableSpace α} (f : αε) (q : ) (μ : MeasureTheory.Measure α) :

(∫ ‖f a‖^q ∂μ) ^ (1/q), which is a seminorm on the space of measurable functions for which this quantity is finite

Equations
Instances For
    theorem MeasureTheory.eLpNorm'_eq_lintegral_enorm {α : Type u_1} {F : Type u_4} [NormedAddCommGroup F] {x✝ : MeasurableSpace α} (f : αF) (q : ) (μ : MeasureTheory.Measure α) :
    MeasureTheory.eLpNorm' f q μ = (∫⁻ (a : α), f a‖ₑ ^ q μ) ^ (1 / q)
    @[deprecated MeasureTheory.eLpNorm'_eq_lintegral_enorm (since := "2025-01-17")]
    theorem MeasureTheory.eLpNorm'_eq_lintegral_nnnorm {α : Type u_1} {F : Type u_4} [NormedAddCommGroup F] {x✝ : MeasurableSpace α} (f : αF) (q : ) (μ : MeasureTheory.Measure α) :
    MeasureTheory.eLpNorm' f q μ = (∫⁻ (a : α), f a‖ₑ ^ q μ) ^ (1 / q)

    Alias of MeasureTheory.eLpNorm'_eq_lintegral_enorm.

    def MeasureTheory.eLpNormEssSup {α : Type u_1} {ε : Type u_2} [ENorm ε] {x✝ : MeasurableSpace α} (f : αε) (μ : MeasureTheory.Measure α) :

    seminorm for ℒ∞, equal to the essential supremum of ‖f‖.

    Equations
    Instances For
      theorem MeasureTheory.eLpNormEssSup_eq_essSup_enorm {α : Type u_1} {F : Type u_4} [NormedAddCommGroup F] {x✝ : MeasurableSpace α} (f : αF) (μ : MeasureTheory.Measure α) :
      MeasureTheory.eLpNormEssSup f μ = essSup (fun (x : α) => f x‖ₑ) μ
      @[deprecated MeasureTheory.eLpNormEssSup_eq_essSup_enorm (since := "2025-01-17")]
      theorem MeasureTheory.eLpNormEssSup_eq_essSup_nnnorm {α : Type u_1} {F : Type u_4} [NormedAddCommGroup F] {x✝ : MeasurableSpace α} (f : αF) (μ : MeasureTheory.Measure α) :
      MeasureTheory.eLpNormEssSup f μ = essSup (fun (x : α) => f x‖ₑ) μ

      Alias of MeasureTheory.eLpNormEssSup_eq_essSup_enorm.

      def MeasureTheory.eLpNorm {α : Type u_1} {ε : Type u_2} [ENorm ε] {x✝ : MeasurableSpace α} (f : αε) (p : ENNReal) (μ : MeasureTheory.Measure α := by volume_tac) :

      ℒp seminorm, equal to 0 for p=0, to (∫ ‖f a‖^p ∂μ) ^ (1/p) for 0 < p < ∞ and to essSup ‖f‖ μ for p = ∞.

      Equations
      Instances For
        theorem MeasureTheory.eLpNorm_eq_eLpNorm' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hp_ne_zero : p 0) (hp_ne_top : p ) {f : αF} :
        theorem MeasureTheory.eLpNorm_nnreal_eq_eLpNorm' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {p : NNReal} (hp : p 0) :
        theorem MeasureTheory.eLpNorm_eq_lintegral_rpow_enorm {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hp_ne_zero : p 0) (hp_ne_top : p ) {f : αF} :
        MeasureTheory.eLpNorm f p μ = (∫⁻ (x : α), f x‖ₑ ^ p.toReal μ) ^ (1 / p.toReal)
        @[deprecated MeasureTheory.eLpNorm_eq_lintegral_rpow_enorm (since := "2025-01-17")]
        theorem MeasureTheory.eLpNorm_eq_lintegral_rpow_nnnorm {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hp_ne_zero : p 0) (hp_ne_top : p ) {f : αF} :
        MeasureTheory.eLpNorm f p μ = (∫⁻ (x : α), f x‖ₑ ^ p.toReal μ) ^ (1 / p.toReal)

        Alias of MeasureTheory.eLpNorm_eq_lintegral_rpow_enorm.

        theorem MeasureTheory.eLpNorm_nnreal_eq_lintegral {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {p : NNReal} (hp : p 0) :
        MeasureTheory.eLpNorm f (↑p) μ = (∫⁻ (x : α), f x‖ₑ ^ p μ) ^ (1 / p)
        @[deprecated MeasureTheory.eLpNorm_one_eq_lintegral_enorm (since := "2025-01-17")]
        theorem MeasureTheory.eLpNorm_one_eq_lintegral_nnnorm {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :

        Alias of MeasureTheory.eLpNorm_one_eq_lintegral_enorm.

        def MeasureTheory.Memℒp {ε : Type u_2} [ENorm ε] {α : Type u_6} {x✝ : MeasurableSpace α} [TopologicalSpace ε] (f : αε) (p : ENNReal) (μ : MeasureTheory.Measure α := by volume_tac) :

        The property that f:α→E is ae strongly measurable and (∫ ‖f a‖^p ∂μ)^(1/p) is finite if p < ∞, or essSup f < ∞ if p = ∞.

        Equations
        Instances For
          theorem MeasureTheory.lintegral_rpow_enorm_eq_rpow_eLpNorm' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (hq0_lt : 0 < q) :
          ∫⁻ (a : α), f a‖ₑ ^ q μ = MeasureTheory.eLpNorm' f q μ ^ q
          @[deprecated MeasureTheory.lintegral_rpow_enorm_eq_rpow_eLpNorm' (since := "2025-01-17")]
          theorem MeasureTheory.lintegral_rpow_nnnorm_eq_rpow_eLpNorm' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (hq0_lt : 0 < q) :
          ∫⁻ (a : α), f a‖ₑ ^ q μ = MeasureTheory.eLpNorm' f q μ ^ q

          Alias of MeasureTheory.lintegral_rpow_enorm_eq_rpow_eLpNorm'.

          theorem MeasureTheory.eLpNorm_nnreal_pow_eq_lintegral {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {p : NNReal} (hp : p 0) :
          MeasureTheory.eLpNorm f (↑p) μ ^ p = ∫⁻ (x : α), f x‖ₑ ^ p μ
          theorem MeasureTheory.Memℒp.eLpNorm_lt_top {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hfp : MeasureTheory.Memℒp f p μ) :
          theorem MeasureTheory.Memℒp.eLpNorm_ne_top {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hfp : MeasureTheory.Memℒp f p μ) :
          theorem MeasureTheory.lintegral_rpow_enorm_lt_top_of_eLpNorm'_lt_top {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (hq0_lt : 0 < q) (hfq : MeasureTheory.eLpNorm' f q μ < ) :
          ∫⁻ (a : α), f a‖ₑ ^ q μ <
          @[deprecated MeasureTheory.lintegral_rpow_enorm_lt_top_of_eLpNorm'_lt_top (since := "2025-01-17")]
          theorem MeasureTheory.lintegral_rpow_nnnorm_lt_top_of_eLpNorm'_lt_top' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (hq0_lt : 0 < q) (hfq : MeasureTheory.eLpNorm' f q μ < ) :
          ∫⁻ (a : α), f a‖ₑ ^ q μ <

          Alias of MeasureTheory.lintegral_rpow_enorm_lt_top_of_eLpNorm'_lt_top.

          theorem MeasureTheory.lintegral_rpow_enorm_lt_top_of_eLpNorm_lt_top {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (hp_ne_zero : p 0) (hp_ne_top : p ) (hfp : MeasureTheory.eLpNorm f p μ < ) :
          ∫⁻ (a : α), f a‖ₑ ^ p.toReal μ <
          @[deprecated MeasureTheory.lintegral_rpow_enorm_lt_top_of_eLpNorm_lt_top (since := "2025-01-17")]
          theorem MeasureTheory.lintegral_rpow_nnnorm_lt_top_of_eLpNorm_lt_top {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (hp_ne_zero : p 0) (hp_ne_top : p ) (hfp : MeasureTheory.eLpNorm f p μ < ) :
          ∫⁻ (a : α), f a‖ₑ ^ p.toReal μ <

          Alias of MeasureTheory.lintegral_rpow_enorm_lt_top_of_eLpNorm_lt_top.

          theorem MeasureTheory.eLpNorm_lt_top_iff_lintegral_rpow_nnnorm_lt_top {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (hp_ne_zero : p 0) (hp_ne_top : p ) :
          MeasureTheory.eLpNorm f p μ < ∫⁻ (a : α), f a‖ₑ ^ p.toReal μ <
          @[simp]
          theorem MeasureTheory.eLpNorm'_exponent_zero {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :
          @[simp]
          theorem MeasureTheory.eLpNorm_exponent_zero {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :
          @[simp]
          theorem MeasureTheory.eLpNorm'_zero {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hp0_lt : 0 < q) :
          @[simp]
          theorem MeasureTheory.eLpNorm'_zero' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hq0_ne : q 0) (hμ : μ 0) :
          @[simp]
          @[simp]
          theorem MeasureTheory.eLpNorm_zero' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] :
          MeasureTheory.eLpNorm (fun (x : α) => 0) p μ = 0
          @[simp]
          @[simp]
          theorem MeasureTheory.Memℒp.zero' {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] :
          MeasureTheory.Memℒp (fun (x : α) => 0) p μ
          @[deprecated MeasureTheory.Memℒp.zero (since := "2025-01-21")]

          Alias of MeasureTheory.Memℒp.zero.

          @[deprecated MeasureTheory.Memℒp.zero' (since := "2025-01-21")]
          theorem MeasureTheory.zero_mem_ℒp {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] :
          MeasureTheory.Memℒp (fun (x : α) => 0) p μ

          Alias of MeasureTheory.Memℒp.zero'.

          theorem MeasureTheory.eLpNorm'_measure_zero_of_pos {α : Type u_1} {F : Type u_4} {q : } [NormedAddCommGroup F] [MeasurableSpace α] {f : αF} (hq_pos : 0 < q) :
          theorem MeasureTheory.eLpNorm'_measure_zero_of_neg {α : Type u_1} {F : Type u_4} {q : } [NormedAddCommGroup F] [MeasurableSpace α] {f : αF} (hq_neg : q < 0) :
          @[simp]
          theorem MeasureTheory.eLpNorm_measure_zero {α : Type u_1} {F : Type u_4} {p : ENNReal} [NormedAddCommGroup F] [MeasurableSpace α] {f : αF} :
          @[simp]
          theorem MeasureTheory.memℒp_measure_zero {α : Type u_1} {F : Type u_4} {p : ENNReal} [NormedAddCommGroup F] [MeasurableSpace α] {f : αF} :
          @[simp]
          theorem MeasureTheory.eLpNorm'_neg {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} [NormedAddCommGroup F] (f : αF) (q : ) (μ : MeasureTheory.Measure α) :
          @[simp]
          theorem MeasureTheory.eLpNorm_neg {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} [NormedAddCommGroup F] (f : αF) (p : ENNReal) (μ : MeasureTheory.Measure α) :
          theorem MeasureTheory.eLpNorm_sub_comm {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} [NormedAddCommGroup E] (f g : αE) (p : ENNReal) (μ : MeasureTheory.Measure α) :
          theorem MeasureTheory.Memℒp.neg {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hf : MeasureTheory.Memℒp f p μ) :
          theorem MeasureTheory.memℒp_neg_iff {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} :
          theorem MeasureTheory.eLpNorm'_const {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (c : F) (hq_pos : 0 < q) :
          MeasureTheory.eLpNorm' (fun (x : α) => c) q μ = c‖ₑ * μ Set.univ ^ (1 / q)
          theorem MeasureTheory.eLpNorm'_const' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [MeasureTheory.IsFiniteMeasure μ] (c : F) (hc_ne_zero : c 0) (hq_ne_zero : q 0) :
          MeasureTheory.eLpNorm' (fun (x : α) => c) q μ = c‖ₑ * μ Set.univ ^ (1 / q)
          theorem MeasureTheory.eLpNormEssSup_const {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (c : F) (hμ : μ 0) :
          MeasureTheory.eLpNormEssSup (fun (x : α) => c) μ = c‖ₑ
          theorem MeasureTheory.eLpNorm_const {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (c : F) (h0 : p 0) (hμ : μ 0) :
          MeasureTheory.eLpNorm (fun (x : α) => c) p μ = c‖ₑ * μ Set.univ ^ (1 / p.toReal)
          theorem MeasureTheory.eLpNorm_const' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (c : F) (h0 : p 0) (h_top : p ) :
          MeasureTheory.eLpNorm (fun (x : α) => c) p μ = c‖ₑ * μ Set.univ ^ (1 / p.toReal)
          theorem MeasureTheory.eLpNorm_const_lt_top_iff {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {p : ENNReal} {c : F} (hp_ne_zero : p 0) (hp_ne_top : p ) :
          MeasureTheory.eLpNorm (fun (x : α) => c) p μ < c = 0 μ Set.univ <
          theorem MeasureTheory.memℒp_const {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (c : E) [MeasureTheory.IsFiniteMeasure μ] :
          MeasureTheory.Memℒp (fun (x : α) => c) p μ
          theorem MeasureTheory.memℒp_top_const {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (c : E) :
          MeasureTheory.Memℒp (fun (x : α) => c) μ
          theorem MeasureTheory.memℒp_const_iff {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {p : ENNReal} {c : E} (hp_ne_zero : p 0) (hp_ne_top : p ) :
          MeasureTheory.Memℒp (fun (x : α) => c) p μ c = 0 μ Set.univ <
          theorem MeasureTheory.eLpNorm'_mono_nnnorm_ae {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (hq : 0 q) (h : ∀ᵐ (x : α) μ, f x‖₊ g x‖₊) :
          theorem MeasureTheory.eLpNorm'_mono_ae {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (hq : 0 q) (h : ∀ᵐ (x : α) μ, f x g x) :
          theorem MeasureTheory.eLpNorm'_congr_nnnorm_ae {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f g : αF} (hfg : ∀ᵐ (x : α) μ, f x‖₊ = g x‖₊) :
          theorem MeasureTheory.eLpNorm'_congr_norm_ae {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f g : αF} (hfg : ∀ᵐ (x : α) μ, f x = g x) :
          theorem MeasureTheory.eLpNorm'_congr_ae {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f g : αF} (hfg : f =ᵐ[μ] g) :
          theorem MeasureTheory.eLpNorm_mono_nnnorm_ae {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (h : ∀ᵐ (x : α) μ, f x‖₊ g x‖₊) :
          theorem MeasureTheory.eLpNorm_mono_ae {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (h : ∀ᵐ (x : α) μ, f x g x) :
          theorem MeasureTheory.eLpNorm_mono_ae_real {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {g : α} (h : ∀ᵐ (x : α) μ, f x g x) :
          theorem MeasureTheory.eLpNorm_mono_nnnorm {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (h : ∀ (x : α), f x‖₊ g x‖₊) :
          theorem MeasureTheory.eLpNorm_mono {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (h : ∀ (x : α), f x g x) :
          theorem MeasureTheory.eLpNorm_mono_real {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {g : α} (h : ∀ (x : α), f x g x) :
          theorem MeasureTheory.eLpNormEssSup_le_of_ae_nnnorm_bound {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {C : NNReal} (hfC : ∀ᵐ (x : α) μ, f x‖₊ C) :
          theorem MeasureTheory.eLpNormEssSup_le_of_ae_bound {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {C : } (hfC : ∀ᵐ (x : α) μ, f x C) :
          theorem MeasureTheory.eLpNormEssSup_lt_top_of_ae_bound {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {C : } (hfC : ∀ᵐ (x : α) μ, f x C) :
          theorem MeasureTheory.eLpNorm_le_of_ae_nnnorm_bound {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {C : NNReal} (hfC : ∀ᵐ (x : α) μ, f x‖₊ C) :
          theorem MeasureTheory.eLpNorm_le_of_ae_bound {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {C : } (hfC : ∀ᵐ (x : α) μ, f x C) :
          theorem MeasureTheory.eLpNorm_congr_nnnorm_ae {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (hfg : ∀ᵐ (x : α) μ, f x‖₊ = g x‖₊) :
          theorem MeasureTheory.eLpNorm_congr_norm_ae {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (hfg : ∀ᵐ (x : α) μ, f x = g x) :
          theorem MeasureTheory.eLpNorm_indicator_sub_indicator {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (s t : Set α) (f : αE) :
          MeasureTheory.eLpNorm (s.indicator f - t.indicator f) p μ = MeasureTheory.eLpNorm ((symmDiff s t).indicator f) p μ
          @[simp]
          theorem MeasureTheory.eLpNorm'_norm {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :
          MeasureTheory.eLpNorm' (fun (a : α) => f a) q μ = MeasureTheory.eLpNorm' f q μ
          @[simp]
          theorem MeasureTheory.eLpNorm_norm {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (f : αF) :
          MeasureTheory.eLpNorm (fun (x : α) => f x) p μ = MeasureTheory.eLpNorm f p μ
          theorem MeasureTheory.eLpNorm'_norm_rpow {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (f : αF) (p q : ) (hq_pos : 0 < q) :
          MeasureTheory.eLpNorm' (fun (x : α) => f x ^ q) p μ = MeasureTheory.eLpNorm' f (p * q) μ ^ q
          theorem MeasureTheory.eLpNorm_norm_rpow {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (f : αF) (hq_pos : 0 < q) :
          MeasureTheory.eLpNorm (fun (x : α) => f x ^ q) p μ = MeasureTheory.eLpNorm f (p * ENNReal.ofReal q) μ ^ q
          theorem MeasureTheory.eLpNorm_congr_ae {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f g : αF} (hfg : f =ᵐ[μ] g) :
          theorem MeasureTheory.memℒp_congr_ae {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f g : αE} (hfg : f =ᵐ[μ] g) :
          theorem MeasureTheory.Memℒp.ae_eq {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f g : αE} (hfg : f =ᵐ[μ] g) (hf_Lp : MeasureTheory.Memℒp f p μ) :
          theorem MeasureTheory.Memℒp.of_le {α : Type u_1} {E : Type u_3} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} (hg : MeasureTheory.Memℒp g p μ) (hf : MeasureTheory.AEStronglyMeasurable f μ) (hfg : ∀ᵐ (x : α) μ, f x g x) :
          theorem MeasureTheory.Memℒp.mono {α : Type u_1} {E : Type u_3} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} (hg : MeasureTheory.Memℒp g p μ) (hf : MeasureTheory.AEStronglyMeasurable f μ) (hfg : ∀ᵐ (x : α) μ, f x g x) :

          Alias of MeasureTheory.Memℒp.of_le.

          theorem MeasureTheory.Memℒp.mono' {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {g : α} (hg : MeasureTheory.Memℒp g p μ) (hf : MeasureTheory.AEStronglyMeasurable f μ) (h : ∀ᵐ (a : α) μ, f a g a) :
          theorem MeasureTheory.Memℒp.congr_norm {α : Type u_1} {E : Type u_3} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} (hf : MeasureTheory.Memℒp f p μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) (h : ∀ᵐ (a : α) μ, f a = g a) :
          theorem MeasureTheory.memℒp_congr_norm {α : Type u_1} {E : Type u_3} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} (hf : MeasureTheory.AEStronglyMeasurable f μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) (h : ∀ᵐ (a : α) μ, f a = g a) :
          theorem MeasureTheory.memℒp_top_of_bound {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) (C : ) (hfC : ∀ᵐ (x : α) μ, f x C) :
          theorem MeasureTheory.Memℒp.of_bound {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [MeasureTheory.IsFiniteMeasure μ] {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) (C : ) (hfC : ∀ᵐ (x : α) μ, f x C) :
          theorem MeasureTheory.eLpNorm'_mono_measure {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ ν : MeasureTheory.Measure α} [NormedAddCommGroup F] (f : αF) (hμν : ν μ) (hq : 0 q) :
          theorem MeasureTheory.eLpNormEssSup_mono_measure {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} [NormedAddCommGroup F] (f : αF) (hμν : ν.AbsolutelyContinuous μ) :
          theorem MeasureTheory.eLpNorm_mono_measure {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ ν : MeasureTheory.Measure α} [NormedAddCommGroup F] (f : αF) (hμν : ν μ) :
          theorem MeasureTheory.Memℒp.mono_measure {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ ν : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hμν : ν μ) (hf : MeasureTheory.Memℒp f p μ) :
          theorem MeasureTheory.eLpNorm_indicator_eq_eLpNorm_restrict {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {s : Set α} (hs : MeasurableSet s) :
          MeasureTheory.eLpNorm (s.indicator f) p μ = MeasureTheory.eLpNorm f p (μ.restrict s)
          @[deprecated MeasureTheory.eLpNorm_indicator_eq_eLpNorm_restrict (since := "2025-01-07")]
          theorem MeasureTheory.eLpNorm_indicator_eq_restrict {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {s : Set α} (hs : MeasurableSet s) :
          MeasureTheory.eLpNorm (s.indicator f) p μ = MeasureTheory.eLpNorm f p (μ.restrict s)

          Alias of MeasureTheory.eLpNorm_indicator_eq_eLpNorm_restrict.

          theorem MeasureTheory.eLpNorm_restrict_le {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} [NormedAddCommGroup F] (f : αF) (p : ENNReal) (μ : MeasureTheory.Measure α) (s : Set α) :
          theorem MeasureTheory.eLpNorm_indicator_le {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {s : Set α} (f : αE) :
          MeasureTheory.eLpNorm (s.indicator f) p μ MeasureTheory.eLpNorm f p μ
          theorem MeasureTheory.eLpNormEssSup_indicator_const_le {α : Type u_1} {G : Type u_5} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup G] (s : Set α) (c : G) :
          MeasureTheory.eLpNormEssSup (s.indicator fun (x : α) => c) μ c‖ₑ
          theorem MeasureTheory.eLpNormEssSup_indicator_const_eq {α : Type u_1} {G : Type u_5} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup G] (s : Set α) (c : G) (hμs : μ s 0) :
          MeasureTheory.eLpNormEssSup (s.indicator fun (x : α) => c) μ = c‖ₑ
          theorem MeasureTheory.eLpNorm_indicator_const₀ {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {c : F} {s : Set α} (hs : MeasureTheory.NullMeasurableSet s μ) (hp : p 0) (hp_top : p ) :
          MeasureTheory.eLpNorm (s.indicator fun (x : α) => c) p μ = c‖ₑ * μ s ^ (1 / p.toReal)
          theorem MeasureTheory.eLpNorm_indicator_const {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {c : F} {s : Set α} (hs : MeasurableSet s) (hp : p 0) (hp_top : p ) :
          MeasureTheory.eLpNorm (s.indicator fun (x : α) => c) p μ = c‖ₑ * μ s ^ (1 / p.toReal)
          theorem MeasureTheory.eLpNorm_indicator_const' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {c : F} {s : Set α} (hs : MeasurableSet s) (hμs : μ s 0) (hp : p 0) :
          MeasureTheory.eLpNorm (s.indicator fun (x : α) => c) p μ = c‖ₑ * μ s ^ (1 / p.toReal)
          theorem MeasureTheory.eLpNorm_indicator_const_le {α : Type u_1} {G : Type u_5} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup G] {s : Set α} (c : G) (p : ENNReal) :
          MeasureTheory.eLpNorm (s.indicator fun (x : α) => c) p μ c‖ₑ * μ s ^ (1 / p.toReal)
          theorem MeasureTheory.Memℒp.indicator {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {s : Set α} (hs : MeasurableSet s) (hf : MeasureTheory.Memℒp f p μ) :
          MeasureTheory.Memℒp (s.indicator f) p μ
          theorem MeasureTheory.memℒp_indicator_iff_restrict {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {s : Set α} (hs : MeasurableSet s) :
          MeasureTheory.Memℒp (s.indicator f) p μ MeasureTheory.Memℒp f p (μ.restrict s)
          theorem MeasureTheory.memℒp_indicator_const {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {s : Set α} (p : ENNReal) (hs : MeasurableSet s) (c : E) (hμsc : c = 0 μ s ) :
          MeasureTheory.Memℒp (s.indicator fun (x : α) => c) p μ
          theorem MeasureTheory.eLpNormEssSup_piecewise {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {s : Set α} (f g : αE) [DecidablePred fun (x : α) => x s] (hs : MeasurableSet s) :
          MeasureTheory.eLpNormEssSup (s.piecewise f g) μ = MeasureTheory.eLpNormEssSup f (μ.restrict s) MeasureTheory.eLpNormEssSup g (μ.restrict s)
          theorem MeasureTheory.eLpNorm_top_piecewise {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {s : Set α} (f g : αE) [DecidablePred fun (x : α) => x s] (hs : MeasurableSet s) :
          MeasureTheory.eLpNorm (s.piecewise f g) μ = MeasureTheory.eLpNorm f (μ.restrict s) MeasureTheory.eLpNorm g (μ.restrict s)
          theorem MeasureTheory.Memℒp.piecewise {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {s : Set α} [DecidablePred fun (x : α) => x s] {g : αF} (hs : MeasurableSet s) (hf : MeasureTheory.Memℒp f p (μ.restrict s)) (hg : MeasureTheory.Memℒp g p (μ.restrict s)) :
          MeasureTheory.Memℒp (s.piecewise f g) p μ
          theorem MeasureTheory.eLpNorm_restrict_eq_of_support_subset {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {s : Set α} {f : αF} (hsf : Function.support f s) :
          MeasureTheory.eLpNorm f p (μ.restrict s) = MeasureTheory.eLpNorm f p μ

          For a function f with support in s, the Lᵖ norms of f with respect to μ and μ.restrict s are the same.

          theorem MeasureTheory.Memℒp.restrict {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (s : Set α) {f : αE} (hf : MeasureTheory.Memℒp f p μ) :
          MeasureTheory.Memℒp f p (μ.restrict s)
          theorem MeasureTheory.eLpNorm'_smul_measure {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {p : } (hp : 0 p) {f : αF} (c : ENNReal) :
          theorem MeasureTheory.eLpNorm_smul_measure_of_ne_zero {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} [NormedAddCommGroup F] {c : ENNReal} (hc : c 0) (f : αF) (p : ENNReal) (μ : MeasureTheory.Measure α) :
          MeasureTheory.eLpNorm f p (c μ) = c ^ (1 / p).toReal MeasureTheory.eLpNorm f p μ

          See eLpNorm_smul_measure_of_ne_zero' for a version with scalar multiplication by ℝ≥0.

          theorem MeasureTheory.eLpNorm_smul_measure_of_ne_zero' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} [NormedAddCommGroup F] {c : NNReal} (hc : c 0) (f : αF) (p : ENNReal) (μ : MeasureTheory.Measure α) :

          See eLpNorm_smul_measure_of_ne_zero for a version with scalar multiplication by ℝ≥0∞.

          theorem MeasureTheory.eLpNorm_smul_measure_of_ne_top {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {p : ENNReal} (hp_ne_top : p ) (f : αF) (c : ENNReal) :
          MeasureTheory.eLpNorm f p (c μ) = c ^ (1 / p).toReal MeasureTheory.eLpNorm f p μ

          See eLpNorm_smul_measure_of_ne_top' for a version with scalar multiplication by ℝ≥0.

          theorem MeasureTheory.eLpNorm_smul_measure_of_ne_top' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hp : p ) (c : NNReal) (f : αF) :

          See eLpNorm_smul_measure_of_ne_top' for a version with scalar multiplication by ℝ≥0∞.

          theorem MeasureTheory.Memℒp.of_measure_le_smul {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {μ' : MeasureTheory.Measure α} (c : ENNReal) (hc : c ) (hμ'_le : μ' c μ) {f : αE} (hf : MeasureTheory.Memℒp f p μ) :
          theorem MeasureTheory.Memℒp.smul_measure {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {c : ENNReal} (hf : MeasureTheory.Memℒp f p μ) (hc : c ) :
          theorem MeasureTheory.eLpNormEssSup_eq_iSup {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (hμ : ∀ (a : α), μ {a} 0) (f : αE) :
          theorem MeasureTheory.Memℒp.left_of_add_measure {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ ν : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (h : MeasureTheory.Memℒp f p (μ + ν)) :
          theorem MeasureTheory.Memℒp.right_of_add_measure {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ ν : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (h : MeasureTheory.Memℒp f p (μ + ν)) :
          theorem MeasureTheory.Memℒp.norm {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (h : MeasureTheory.Memℒp f p μ) :
          MeasureTheory.Memℒp (fun (x : α) => f x) p μ
          theorem MeasureTheory.memℒp_norm_iff {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) :
          MeasureTheory.Memℒp (fun (x : α) => f x) p μ MeasureTheory.Memℒp f p μ
          theorem MeasureTheory.eLpNorm'_eq_zero_of_ae_zero {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (hq0_lt : 0 < q) (hf_zero : f =ᵐ[μ] 0) :
          theorem MeasureTheory.eLpNorm'_eq_zero_of_ae_zero' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hq0_ne : q 0) (hμ : μ 0) {f : αF} (hf_zero : f =ᵐ[μ] 0) :
          theorem MeasureTheory.ae_eq_zero_of_eLpNorm'_eq_zero {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hq0 : 0 q) (hf : MeasureTheory.AEStronglyMeasurable f μ) (h : MeasureTheory.eLpNorm' f q μ = 0) :
          f =ᵐ[μ] 0
          theorem MeasureTheory.eLpNorm'_eq_zero_iff {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (hq0_lt : 0 < q) {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) :
          @[simp]
          theorem MeasureTheory.eLpNorm_eq_zero_iff {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) (h0 : p 0) :
          theorem MeasureTheory.eLpNorm_eq_zero_of_ae_zero {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hf : f =ᵐ[μ] 0) :
          theorem MeasureTheory.meas_eLpNormEssSup_lt {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :
          μ {y : α | MeasureTheory.eLpNormEssSup f μ < f y‖ₑ} = 0
          @[simp]
          theorem MeasureTheory.eLpNorm_of_isEmpty {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [IsEmpty α] (f : αE) (p : ENNReal) :
          theorem MeasureTheory.Memℒp.comp_of_map {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {β : Type u_6} {mβ : MeasurableSpace β} {f : αβ} {g : βE} (hg : MeasureTheory.Memℒp g p (MeasureTheory.Measure.map f μ)) (hf : AEMeasurable f μ) :
          theorem MeasureTheory.eLpNorm_comp_measurePreserving {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {β : Type u_6} {mβ : MeasurableSpace β} {f : αβ} {g : βE} {ν : MeasureTheory.Measure β} (hg : MeasureTheory.AEStronglyMeasurable g ν) (hf : MeasureTheory.MeasurePreserving f μ ν) :
          theorem MeasureTheory.AEEqFun.eLpNorm_compMeasurePreserving {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {β : Type u_6} {mβ : MeasurableSpace β} {f : αβ} {ν : MeasureTheory.Measure β} (g : β →ₘ[ν] E) (hf : MeasureTheory.MeasurePreserving f μ ν) :
          MeasureTheory.eLpNorm (↑(g.compMeasurePreserving f hf)) p μ = MeasureTheory.eLpNorm (↑g) p ν
          theorem MeasureTheory.Memℒp.comp_measurePreserving {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {β : Type u_6} {mβ : MeasurableSpace β} {f : αβ} {g : βE} {ν : MeasureTheory.Measure β} (hg : MeasureTheory.Memℒp g p ν) (hf : MeasureTheory.MeasurePreserving f μ ν) :
          theorem MeasurableEmbedding.eLpNorm_map_measure {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {β : Type u_6} {mβ : MeasurableSpace β} {f : αβ} {g : βF} (hf : MeasurableEmbedding f) :
          theorem MeasurableEmbedding.memℒp_map_measure_iff {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {β : Type u_6} {mβ : MeasurableSpace β} {f : αβ} {g : βF} (hf : MeasurableEmbedding f) :
          theorem MeasurableEquiv.memℒp_map_measure_iff {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {β : Type u_6} {mβ : MeasurableSpace β} (f : α ≃ᵐ β) {g : βF} :
          theorem MeasureTheory.eLpNorm'_le_nnreal_smul_eLpNorm'_of_ae_le_mul {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} {c : NNReal} (h : ∀ᵐ (x : α) μ, f x‖₊ c * g x‖₊) {p : } (hp : 0 < p) :
          theorem MeasureTheory.eLpNorm_le_nnreal_smul_eLpNorm_of_ae_le_mul {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} {c : NNReal} (h : ∀ᵐ (x : α) μ, f x‖₊ c * g x‖₊) (p : ENNReal) :
          theorem MeasureTheory.eLpNorm_eq_zero_and_zero_of_ae_le_mul_neg {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} {c : } (h : ∀ᵐ (x : α) μ, f x c * g x) (hc : c < 0) (p : ENNReal) :

          When c is negative, ‖f x‖ ≤ c * ‖g x‖ is nonsense and forces both f and g to have an eLpNorm of 0.

          theorem MeasureTheory.eLpNorm_le_mul_eLpNorm_of_ae_le_mul {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} {c : } (h : ∀ᵐ (x : α) μ, f x c * g x) (p : ENNReal) :
          theorem MeasureTheory.Memℒp.of_nnnorm_le_mul {α : Type u_1} {E : Type u_3} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} {c : NNReal} (hg : MeasureTheory.Memℒp g p μ) (hf : MeasureTheory.AEStronglyMeasurable f μ) (hfg : ∀ᵐ (x : α) μ, f x‖₊ c * g x‖₊) :
          theorem MeasureTheory.Memℒp.of_le_mul {α : Type u_1} {E : Type u_3} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} {c : } (hg : MeasureTheory.Memℒp g p μ) (hf : MeasureTheory.AEStronglyMeasurable f μ) (hfg : ∀ᵐ (x : α) μ, f x c * g x) :

          Bounded actions by normed rings #

          In this section we show inequalities on the norm.

          theorem MeasureTheory.eLpNorm'_const_smul_le {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {𝕜 : Type u_6} [NormedRing 𝕜] [MulActionWithZero 𝕜 F] [BoundedSMul 𝕜 F] {c : 𝕜} {f : αF} (hq : 0 < q) :
          theorem MeasureTheory.eLpNormEssSup_const_smul_le {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {𝕜 : Type u_6} [NormedRing 𝕜] [MulActionWithZero 𝕜 F] [BoundedSMul 𝕜 F] {c : 𝕜} {f : αF} :
          theorem MeasureTheory.eLpNorm_const_smul_le {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {𝕜 : Type u_6} [NormedRing 𝕜] [MulActionWithZero 𝕜 F] [BoundedSMul 𝕜 F] {c : 𝕜} {f : αF} :
          theorem MeasureTheory.Memℒp.const_smul {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {𝕜 : Type u_6} [NormedRing 𝕜] [MulActionWithZero 𝕜 F] [BoundedSMul 𝕜 F] {f : αF} (hf : MeasureTheory.Memℒp f p μ) (c : 𝕜) :
          theorem MeasureTheory.Memℒp.const_mul {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {𝕜 : Type u_6} [NormedRing 𝕜] {f : α𝕜} (hf : MeasureTheory.Memℒp f p μ) (c : 𝕜) :
          MeasureTheory.Memℒp (fun (x : α) => c * f x) p μ

          Bounded actions by normed division rings #

          The inequalities in the previous section are now tight.

          theorem MeasureTheory.eLpNorm'_const_smul {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {𝕜 : Type u_6} [NormedDivisionRing 𝕜] [Module 𝕜 F] [BoundedSMul 𝕜 F] {f : αF} (c : 𝕜) (hq_pos : 0 < q) :
          theorem MeasureTheory.eLpNormEssSup_const_smul {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {𝕜 : Type u_6} [NormedDivisionRing 𝕜] [Module 𝕜 F] [BoundedSMul 𝕜 F] (c : 𝕜) (f : αF) :
          theorem MeasureTheory.eLpNorm_const_smul {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} [NormedAddCommGroup F] {𝕜 : Type u_6} [NormedDivisionRing 𝕜] [Module 𝕜 F] [BoundedSMul 𝕜 F] (c : 𝕜) (f : αF) (p : ENNReal) (μ : MeasureTheory.Measure α) :
          theorem MeasureTheory.eLpNorm_nsmul {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedSpace F] (n : ) (f : αF) :
          theorem MeasureTheory.le_eLpNorm_of_bddBelow {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hp : p 0) (hp' : p ) {f : αF} (C : NNReal) {s : Set α} (hs : MeasurableSet s) (hf : ∀ᵐ (x : α) μ, x sC f x‖₊) :
          C μ s ^ (1 / p.toReal) MeasureTheory.eLpNorm f p μ
          @[simp]
          theorem MeasureTheory.eLpNorm_conj {α : Type u_1} {m0 : MeasurableSpace α} {𝕜 : Type u_6} [RCLike 𝕜] (f : α𝕜) (p : ENNReal) (μ : MeasureTheory.Measure α) :
          theorem MeasureTheory.Memℒp.re {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {𝕜 : Type u_6} [RCLike 𝕜] {f : α𝕜} (hf : MeasureTheory.Memℒp f p μ) :
          MeasureTheory.Memℒp (fun (x : α) => RCLike.re (f x)) p μ
          theorem MeasureTheory.Memℒp.im {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {𝕜 : Type u_6} [RCLike 𝕜] {f : α𝕜} (hf : MeasureTheory.Memℒp f p μ) :
          MeasureTheory.Memℒp (fun (x : α) => RCLike.im (f x)) p μ
          theorem MeasureTheory.ae_bdd_liminf_atTop_rpow_of_eLpNorm_bdd {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [MeasurableSpace E] [OpensMeasurableSpace E] {R : NNReal} {p : ENNReal} {f : αE} (hfmeas : ∀ (n : ), Measurable (f n)) (hbdd : ∀ (n : ), MeasureTheory.eLpNorm (f n) p μ R) :
          ∀ᵐ (x : α) μ, Filter.liminf (fun (n : ) => f n x‖ₑ ^ p.toReal) Filter.atTop <
          theorem MeasureTheory.ae_bdd_liminf_atTop_of_eLpNorm_bdd {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [MeasurableSpace E] [OpensMeasurableSpace E] {R : NNReal} {p : ENNReal} (hp : p 0) {f : αE} (hfmeas : ∀ (n : ), Measurable (f n)) (hbdd : ∀ (n : ), MeasureTheory.eLpNorm (f n) p μ R) :
          ∀ᵐ (x : α) μ, Filter.liminf (fun (n : ) => f n x‖ₑ) Filter.atTop <

          A continuous function with compact support belongs to L^∞. See Continuous.memℒp_of_hasCompactSupport for a version for L^p.

          theorem MeasureTheory.Memℒp.exists_eLpNorm_indicator_compl_lt {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {β : Type u_6} [NormedAddCommGroup β] (hp_top : p ) {f : αβ} (hf : MeasureTheory.Memℒp f p μ) {ε : ENNReal} (hε : ε 0) :
          ∃ (s : Set α), MeasurableSet s μ s < MeasureTheory.eLpNorm (s.indicator f) p μ < ε

          A single function that is Memℒp f p μ is tight with respect to μ.