Documentation

Seymour.Matroid.Operations.Sum1

@[reducible, inline]
abbrev Matrix_1sumComposition {α β : Type} [Zero β] {X₁ Y₁ X₂ Y₂ : Set α} (A₁ : Matrix (↑X₁) (↑Y₁) β) (A₂ : Matrix (↑X₂) (↑Y₂) β) :
Matrix (X₁ X₂) (Y₁ Y₂) β

Matrix-level 1-sum for matroids defined by their standard representation matrices.

Equations
Instances For
    def StandardRepr_1sumComposition {α : Type} [DecidableEq α] {S₁ S₂ : StandardRepr α Z2} (hXY : S₁.X S₂.Y) (hYX : S₁.Y S₂.X) :

    StandardRepr-level 1-sum of two matroids. It checks that everything is disjoint (returned as .snd of the output).

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      structure Matroid.Is1sumOf {α : Type} [DecidableEq α] (M M₁ M₂ : Matroid α) :

      Matroid M is a result of 1-summing M₁ and M₂ in some way.

      Instances For
        theorem StandardRepr_1sumComposition_as_disjointSum {α : Type} [DecidableEq α] {S₁ S₂ : StandardRepr α Z2} {hXY : S₁.X S₂.Y} {hYX : S₁.Y S₂.X} (valid : (StandardRepr_1sumComposition hXY hYX).2) :
        (StandardRepr_1sumComposition hXY hYX).1.toMatroid = S₁.toMatroid.disjointSum S₂.toMatroid

        Matroid constructed from a valid 1-sum of binary matroids is the same as disjoint sum of matroids constructed from them.

        theorem StandardRepr_1sumComposition_comm {α : Type} [DecidableEq α] {S₁ S₂ : StandardRepr α Z2} {hXY : S₁.X S₂.Y} {hYX : S₁.Y S₂.X} (valid : (StandardRepr_1sumComposition hXY hYX).2) :
        (StandardRepr_1sumComposition hXY hYX).1.toMatroid = (StandardRepr_1sumComposition ).1.toMatroid

        A valid 1-sum of binary matroids is commutative.

        theorem StandardRepr_1sumComposition_hasTuSigning {α : Type} [DecidableEq α] {S₁ S₂ : StandardRepr α Z2} (hXY : S₁.X S₂.Y) (hYX : S₁.Y S₂.X) (hS₁ : S₁.HasTuSigning) (hS₂ : S₂.HasTuSigning) :
        (StandardRepr_1sumComposition hXY hYX).1.HasTuSigning
        theorem Matroid.Is1sumOf.isRegular {α : Type} [DecidableEq α] {M M₁ M₂ : Matroid α} (hM : M.Is1sumOf M₁ M₂) (hM₁ : M₁.IsRegular) (hM₂ : M₂.IsRegular) :
        M.IsRegular

        Any 1-sum of regular matroids is a regular matroid. This is the first of the three parts of the easy direction of the Seymour's theorem.