@[reducible, inline]
abbrev
Matrix_1sumComposition
{α β : Type}
[Zero β]
{X₁ Y₁ X₂ Y₂ : Set α}
(A₁ : Matrix (↑X₁) (↑Y₁) β)
(A₂ : Matrix (↑X₂) (↑Y₂) β)
:
Matrix
-level 1-sum for matroids defined by their standard representation matrices.
Equations
- Matrix_1sumComposition A₁ A₂ = Matrix.fromBlocks A₁ 0 0 A₂
Instances For
def
StandardRepr_1sumComposition
{α : Type}
[DecidableEq α]
{S₁ S₂ : StandardRepr α Z2}
(hXY : S₁.X ⫗ S₂.Y)
(hYX : S₁.Y ⫗ S₂.X)
:
StandardRepr α Z2 × Prop
StandardRepr
-level 1-sum of two matroids.
It checks that everything is disjoint (returned as .snd
of the output).
Equations
- One or more equations did not get rendered due to their size.
Instances For
Matroid M
is a result of 1-summing M₁
and M₂
in some way.
- S : StandardRepr α Z2
- S₁ : StandardRepr α Z2
- S₂ : StandardRepr α Z2
- hM : self.S.toMatroid = M
- hM₁ : self.S₁.toMatroid = M₁
- hM₂ : self.S₂.toMatroid = M₂
- hXY : self.S₁.X ⫗ self.S₂.Y
- hYX : self.S₁.Y ⫗ self.S₂.X
- IsSum : (StandardRepr_1sumComposition ⋯ ⋯).1 = self.S
- IsValid : (StandardRepr_1sumComposition ⋯ ⋯).2
Instances For
theorem
StandardRepr_1sumComposition_as_disjointSum
{α : Type}
[DecidableEq α]
{S₁ S₂ : StandardRepr α Z2}
{hXY : S₁.X ⫗ S₂.Y}
{hYX : S₁.Y ⫗ S₂.X}
(valid : (StandardRepr_1sumComposition hXY hYX).2)
:
(StandardRepr_1sumComposition hXY hYX).1.toMatroid = S₁.toMatroid.disjointSum S₂.toMatroid ⋯
Matroid constructed from a valid 1-sum of binary matroids is the same as disjoint sum of matroids constructed from them.
theorem
StandardRepr_1sumComposition_comm
{α : Type}
[DecidableEq α]
{S₁ S₂ : StandardRepr α Z2}
{hXY : S₁.X ⫗ S₂.Y}
{hYX : S₁.Y ⫗ S₂.X}
(valid : (StandardRepr_1sumComposition hXY hYX).2)
:
(StandardRepr_1sumComposition hXY hYX).1.toMatroid = (StandardRepr_1sumComposition ⋯ ⋯).1.toMatroid
A valid 1-sum of binary matroids is commutative.
theorem
StandardRepr_1sumComposition_hasTuSigning
{α : Type}
[DecidableEq α]
{S₁ S₂ : StandardRepr α Z2}
(hXY : S₁.X ⫗ S₂.Y)
(hYX : S₁.Y ⫗ S₂.X)
(hS₁ : S₁.HasTuSigning)
(hS₂ : S₂.HasTuSigning)
:
(StandardRepr_1sumComposition hXY hYX).1.HasTuSigning
theorem
Matroid.Is1sumOf.isRegular
{α : Type}
[DecidableEq α]
{M M₁ M₂ : Matroid α}
(hM : M.Is1sumOf M₁ M₂)
(hM₁ : M₁.IsRegular)
(hM₂ : M₂.IsRegular)
:
M.IsRegular
Any 1-sum of regular matroids is a regular matroid. This is the first of the three parts of the easy direction of the Seymour's theorem.