Documentation

Seymour.Matroid.Operations.Sum1

Matroid 1-sum #

Here we study the 1-sum of matroids (starting with the 1-sum of matrices).

@[reducible, inline]
abbrev matrixSum1 {R : Type} [Zero R] {Xₗ Yₗ Xᵣ Yᵣ : Type} (Aₗ : Matrix Xₗ Yₗ R) (Aᵣ : Matrix Xᵣ Yᵣ R) :
Matrix (Xₗ Xᵣ) (Yₗ Yᵣ) R

Matrix-level 1-sum for matroids defined by their standard representation matrices; does not check legitimacy.

Equations
Instances For
    noncomputable def standardReprSum1 {α : Type} [DecidableEq α] {Sₗ Sᵣ : StandardRepr α Z2} (hXY : Sₗ.X Sᵣ.Y) (hYX : Sₗ.Y Sᵣ.X) :

    StandardRepr-level 1-sum of two matroids. Returns the result only if valid.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def Matroid.Is1sumOf {α : Type} [DecidableEq α] (M Mₗ Mᵣ : Matroid α) :

      Binary matroid M is a result of 1-summing Mₗ and Mᵣ in some way.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem standardReprSum1_X {α : Type} [DecidableEq α] {Sₗ Sᵣ S : StandardRepr α Z2} {hXY : Sₗ.X Sᵣ.Y} {hYX : Sₗ.Y Sᵣ.X} (hS : standardReprSum1 hXY hYX = some S) :
        S.X = Sₗ.X Sᵣ.X
        theorem standardReprSum1_Y {α : Type} [DecidableEq α] {Sₗ Sᵣ S : StandardRepr α Z2} {hXY : Sₗ.X Sᵣ.Y} {hYX : Sₗ.Y Sᵣ.X} (hS : standardReprSum1 hXY hYX = some S) :
        S.Y = Sₗ.Y Sᵣ.Y
        theorem standardReprSum1_hasTuSigning {α : Type} [DecidableEq α] {Sₗ Sᵣ S : StandardRepr α Z2} {hXY : Sₗ.X Sᵣ.Y} {hYX : Sₗ.Y Sᵣ.X} (hSₗ : Sₗ.B.HasTuSigning) (hSᵣ : Sᵣ.B.HasTuSigning) (hS : standardReprSum1 hXY hYX = some S) :
        theorem Matroid.Is1sumOf.isRegular {α : Type} [DecidableEq α] {M Mₗ Mᵣ : Matroid α} (hM : M.Is1sumOf Mₗ Mᵣ) (hMₗ : Mₗ.IsRegular) (hMᵣ : Mᵣ.IsRegular) :

        Any 1-sum of regular matroids is a regular matroid. This is part one (of three) of the easy direction of the Seymour's theorem.