Submodule Basis #
This file provides auxilliary lemmas for proving Matrix.exists_standardRepr_isBase
via the subspace generated by a matrix.
theorem
Basis.linearIndepOn_in_submodule
{α : Type u_1}
{R : Type u_2}
[Ring R]
{X Y G I : Set α}
{A : Matrix (↑X) (↑Y) R}
{hIX : I ⊆ X}
(B : Basis (↑G) R ↥(Submodule.span R A.range))
(hAI : LinearIndepOn R A hIX.elem.range)
:
LinearIndepOn R (fun (x : ↑X) (g : ↑G) => (B.repr ⟨A x, ⋯⟩) g) hIX.elem.range
theorem
Basis.linearIndepOn_of_in_submodule
{α : Type u_1}
{R : Type u_2}
[Ring R]
{X Y G I : Set α}
{A : Matrix (↑X) (↑Y) R}
{hIX : I ⊆ X}
(B : Basis (↑G) R ↥(Submodule.span R A.range))
(hBI : LinearIndepOn R (fun (x : ↑X) (g : ↑G) => (B.repr ⟨A x, ⋯⟩) g) hIX.elem.range)
:
LinearIndepOn R A hIX.elem.range