This file states the Seymour decomposition theorem. Proving hardSeymour
is the ultimate goal of this project.
TODO define graphics matroids.
Instances For
TODO define cographics matroids.
Instances For
Given matroid can be constructed from graphic matroids, cographics matroids, and R10 using 1-sums, 2-sums, and 3-sums.
- graphic: ∀ {α : Type} [inst : DecidableEq α] {M : StandardRepresentation α}, M.IsGraphic → M.IsGood
- cographic: ∀ {α : Type} [inst : DecidableEq α] {M : StandardRepresentation α}, M.IsCographic → M.IsGood
- theR10: ∀ {α : Type} [inst : DecidableEq α] {M : StandardRepresentation α} {e : α ≃ Fin 10}, M.toMatroid.mapEquiv e = MatroidR10.toMatroid → M.IsGood
- is1sum: ∀ {α : Type} [inst : DecidableEq α] {M M₁ M₂ : StandardRepresentation α}, M.Is1sumOf M₁ M₂ → M.IsGood
- is2sum: ∀ {α : Type} [inst : DecidableEq α] {M M₁ M₂ : StandardRepresentation α}, M.Is2sumOf M₁ M₂ → M.IsGood
- is3sum: ∀ {α : Type} [inst : DecidableEq α] {M M₁ M₂ : StandardRepresentation α}, M.Is3sumOf M₁ M₂ → M.IsGood
Instances For
theorem
hardSeymour
{α : Type}
[DecidableEq α]
{M : StandardRepresentation α}
(hM : M.IsRegular)
:
M.IsGood