Documentation
Seymour
.
ForMathlib
.
Basic
Search
Google site search
return to top
source
Imports
Init
Mathlib.Tactic
Imported by
Function
.
myEquiv
Function
.
eq_comp_myEquiv
zom_mul_zom
abs_eq_one
source
def
Function
.
myEquiv
{α :
Type
u_1}
{β₁ :
Type
u_2}
{β₂ :
Type
u_3}
(f :
α
→
β₁
⊕
β₂
)
:
α
≃
{
x₁
:
α
×
β₁
//
f
x₁
.1
=
Sum.inl
x₁
.2
}
⊕
{
x₂
:
α
×
β₂
//
f
x₂
.1
=
Sum.inr
x₂
.2
}
Equations
One or more equations did not get rendered due to their size.
Instances For
source
theorem
Function
.
eq_comp_myEquiv
{α :
Type
u_1}
{β₁ :
Type
u_2}
{β₂ :
Type
u_3}
(f :
α
→
β₁
⊕
β₂
)
:
f
=
Sum.elim
(
Sum.inl
∘
fun (
x
:
{
x₁
:
α
×
β₁
//
f
x₁
.1
=
Sum.inl
x₁
.2
}
) =>
(↑
x
)
.2
)
(
Sum.inr
∘
fun (
x
:
{
x₂
:
α
×
β₂
//
f
x₂
.1
=
Sum.inr
x₂
.2
}
) =>
(↑
x
)
.2
)
∘
⇑
(
Function.myEquiv
f
)
source
theorem
zom_mul_zom
{R :
Type
u_1}
[
Ring
R
]
{x :
R
}
{y :
R
}
(hx :
x
=
0
∨
x
=
1
∨
x
=
-
1
)
(hy :
y
=
0
∨
y
=
1
∨
y
=
-
1
)
:
x
*
y
=
0
∨
x
*
y
=
1
∨
x
*
y
=
-
1
source
theorem
abs_eq_one
{R :
Type
u_1}
[
LinearOrderedCommRing
R
]
(r :
R
)
:
|
r
|
=
1
↔
r
=
1
∨
r
=
-
1