Documentation

Seymour.ForMathlib.Basic

def Function.myEquiv {α : Type u_1} {β₁ : Type u_2} {β₂ : Type u_3} (f : αβ₁ β₂) :
α { x₁ : α × β₁ // f x₁.1 = Sum.inl x₁.2 } { x₂ : α × β₂ // f x₂.1 = Sum.inr x₂.2 }
Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem Function.eq_comp_myEquiv {α : Type u_1} {β₁ : Type u_2} {β₂ : Type u_3} (f : αβ₁ β₂) :
    f = Sum.elim (Sum.inl fun (x : { x₁ : α × β₁ // f x₁.1 = Sum.inl x₁.2 }) => (↑x).2) (Sum.inr fun (x : { x₂ : α × β₂ // f x₂.1 = Sum.inr x₂.2 }) => (↑x).2) (Function.myEquiv f)
    theorem zom_mul_zom {R : Type u_1} [Ring R] {x : R} {y : R} (hx : x = 0 x = 1 x = -1) (hy : y = 0 y = 1 y = -1) :
    x * y = 0 x * y = 1 x * y = -1
    theorem abs_eq_one {R : Type u_1} [LinearOrderedCommRing R] (r : R) :
    |r| = 1 r = 1 r = -1