Documentation

Mathlib.Topology.QuasiSeparated

Quasi-separated spaces #

A topological space is quasi-separated if the intersections of any pairs of compact open subsets are still compact. Notable examples include spectral spaces, Noetherian spaces, and Hausdorff spaces.

A non-example is the interval [0, 1] with doubled origin: the two copies of [0, 1] are compact open subsets, but their intersection (0, 1] is not.

Main results #

def IsQuasiSeparated {α : Type u_1} [TopologicalSpace α] (s : Set α) :

A subset s of a topological space is quasi-separated if the intersections of any pairs of compact open subsets of s are still compact.

Note that this is equivalent to s being a QuasiSeparatedSpace only when s is open.

Equations
Instances For
    theorem quasiSeparatedSpace_iff (α : Type u_3) [TopologicalSpace α] :
    QuasiSeparatedSpace α ∀ (U V : Set α), IsOpen UIsCompact UIsOpen VIsCompact VIsCompact (U V)

    A topological space is quasi-separated if the intersections of any pairs of compact open subsets are still compact.

    Instances
      theorem QuasiSeparatedSpace.inter_isCompact {α : Type u_3} :
      ∀ {inst : TopologicalSpace α} [self : QuasiSeparatedSpace α] (U V : Set α), IsOpen UIsCompact UIsOpen VIsCompact VIsCompact (U V)

      The intersection of two open compact subsets of a quasi-separated space is compact.

      theorem IsQuasiSeparated.image_of_isEmbedding {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} {s : Set α} (H : IsQuasiSeparated s) (h : IsEmbedding f) :
      @[deprecated IsQuasiSeparated.image_of_isEmbedding]
      theorem IsQuasiSeparated.image_of_embedding {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} {s : Set α} (H : IsQuasiSeparated s) (h : IsEmbedding f) :

      Alias of IsQuasiSeparated.image_of_isEmbedding.

      theorem IsOpenEmbedding.isQuasiSeparated_iff {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (h : IsOpenEmbedding f) {s : Set α} :
      @[deprecated IsOpenEmbedding.isQuasiSeparated_iff]
      theorem OpenEmbedding.isQuasiSeparated_iff {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (h : IsOpenEmbedding f) {s : Set α} :

      Alias of IsOpenEmbedding.isQuasiSeparated_iff.

      theorem IsQuasiSeparated.of_subset {α : Type u_1} [TopologicalSpace α] {s : Set α} {t : Set α} (ht : IsQuasiSeparated t) (h : s t) :
      @[instance 100]
      Equations
      • =
      @[deprecated QuasiSeparatedSpace.of_isOpenEmbedding]

      Alias of QuasiSeparatedSpace.of_isOpenEmbedding.