Documentation

Mathlib.Tactic.CategoryTheory.Bicategory.PureCoherence

Coherence tactic for bicategories #

We provide a bicategory_coherence tactic, which proves that any two morphisms (with the same source and target) in a bicategory which are built out of associators and unitors are equal.

@[reducible, inline]
abbrev Mathlib.Tactic.Bicategory.normalizeIsoComp {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {d : B} {p : a b} {f : b c} {g : c d} {pf : a c} {pfg : a d} (η_f : CategoryTheory.CategoryStruct.comp p f pf) (η_g : CategoryTheory.CategoryStruct.comp pf g pfg) :

The composition of the normalizing isomorphisms η_f : p ≫ f ≅ pf and η_g : pf ≫ g ≅ pfg.

Equations
Instances For
    theorem Mathlib.Tactic.Bicategory.naturality_comp {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {p : a b} {f : b c} {g : b c} {h : b c} {pf : a c} {η : f g} {θ : g h} (η_f : CategoryTheory.CategoryStruct.comp p f pf) (η_g : CategoryTheory.CategoryStruct.comp p g pf) (η_h : CategoryTheory.CategoryStruct.comp p h pf) (ih_η : CategoryTheory.Bicategory.whiskerLeftIso p η ≪≫ η_g = η_f) (ih_θ : CategoryTheory.Bicategory.whiskerLeftIso p θ ≪≫ η_h = η_g) :
    theorem Mathlib.Tactic.Bicategory.naturality_inv {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {p : a b} {f : b c} {g : b c} {pf : a c} {η : f g} (η_f : CategoryTheory.CategoryStruct.comp p f pf) (η_g : CategoryTheory.CategoryStruct.comp p g pf) (ih : CategoryTheory.Bicategory.whiskerLeftIso p η ≪≫ η_g = η_f) :
    theorem Mathlib.Tactic.Bicategory.mk_eq_of_naturality {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {f : a b} {g : a b} {f' : a b} {η : f g} {θ : f g} {η' : f g} {θ' : f g} (η_f : CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.id a) f f') (η_g : CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.id a) g f') (Hη : η'.hom = η) (Hθ : θ'.hom = θ) (Hη' : CategoryTheory.Bicategory.whiskerLeftIso (CategoryTheory.CategoryStruct.id a) η' ≪≫ η_g = η_f) (Hθ' : CategoryTheory.Bicategory.whiskerLeftIso (CategoryTheory.CategoryStruct.id a) θ' ≪≫ η_g = η_f) :
    η = θ

    Close the goal of the form η = θ, where η and θ are 2-isomorphisms made up only of associators, unitors, and identities.

    example {B : Type} [Bicategory B] {a : B} :
      (λ_ (𝟙 a)).hom = (ρ_ (𝟙 a)).hom := by
      bicategory_coherence
    
    Equations
    Instances For

      Close the goal of the form η = θ, where η and θ are 2-isomorphisms made up only of associators, unitors, and identities.

      example {B : Type} [Bicategory B] {a : B} :
        (λ_ (𝟙 a)).hom = (ρ_ (𝟙 a)).hom := by
        bicategory_coherence
      
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For