Maximal spectrum of a commutative (semi)ring #
Basic properties the maximal spectrum of a ring.
def
MaximalSpectrum.equivSubtype
(R : Type u_1)
[CommSemiring R]
:
MaximalSpectrum R ≃ { I : Ideal R // I.IsMaximal }
The prime spectrum is in bijection with the set of prime ideals.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
MaximalSpectrum.equivSubtype_symm_apply_asIdeal
(R : Type u_1)
[CommSemiring R]
(I : { I : Ideal R // I.IsMaximal })
:
((MaximalSpectrum.equivSubtype R).symm I).asIdeal = ↑I
@[simp]
theorem
MaximalSpectrum.equivSubtype_apply_coe
(R : Type u_1)
[CommSemiring R]
(I : MaximalSpectrum R)
:
↑((MaximalSpectrum.equivSubtype R) I) = I.asIdeal
theorem
MaximalSpectrum.range_asIdeal
(R : Type u_1)
[CommSemiring R]
:
Set.range MaximalSpectrum.asIdeal = {J : Ideal R | J.IsMaximal}
The natural inclusion from the maximal spectrum to the prime spectrum.
Equations
- x.toPrimeSpectrum = { asIdeal := x.asIdeal, isPrime := ⋯ }