Maximal ideal of local rings #
We prove basic properties of the maximal ideal of a local ring.
The maximal spectrum of a local ring is a singleton.
Equations
- IsLocalRing.instUniqueMaximalSpectrum = { default := { asIdeal := IsLocalRing.maximalIdeal R, isMaximal := ⋯ }, uniq := ⋯ }
An element x of a commutative local semiring is not contained in the maximal ideal
iff it is a unit.
Alias of IsLocalRing.maximal_ideal_unique.
Alias of IsLocalRing.eq_maximalIdeal.
Alias of IsLocalRing.le_maximalIdeal.
Alias of IsLocalRing.mem_maximalIdeal.
Alias of IsLocalRing.not_mem_maximalIdeal.
An element x of a commutative local semiring is not contained in the maximal ideal
iff it is a unit.
Alias of IsLocalRing.isField_iff_maximalIdeal_eq.
Alias of IsLocalRing.maximalIdeal_le_jacobson.
Alias of IsLocalRing.jacobson_eq_maximalIdeal.
Alias of IsLocalRing.ker_eq_maximalIdeal.
Alias of IsLocalRing.maximalIdeal_eq_bot.
Alias of IsLocalRing.of_nilradical_isMaximal.
Let S be the localization of a commutative semiring R at a submonoid M that does not
contain 0. If the nilradical of R is maximal then there is a R-algebra isomorphism between
R and S.