Documentation

Mathlib.Order.Hom.CompleteLattice

Complete lattice homomorphisms #

This file defines frame homomorphisms and complete lattice homomorphisms.

We use the DFunLike design, so each type of morphisms has a companion typeclass which is meant to be satisfied by itself and all stricter types.

Types of morphisms #

Typeclasses #

Concrete homs #

TODO #

Frame homs are Heyting homs.

structure sSupHom (α : Type u_8) (β : Type u_9) [SupSet α] [SupSet β] :
Type (max u_8 u_9)

The type of -preserving functions from α to β.

  • toFun : αβ

    The underlying function of a sSupHom.

  • map_sSup' (s : Set α) : self.toFun (sSup s) = sSup (self.toFun '' s)

    The proposition that a sSupHom commutes with arbitrary suprema/joins.

structure sInfHom (α : Type u_8) (β : Type u_9) [InfSet α] [InfSet β] :
Type (max u_8 u_9)

The type of -preserving functions from α to β.

  • toFun : αβ

    The underlying function of an sInfHom.

  • map_sInf' (s : Set α) : self.toFun (sInf s) = sInf (self.toFun '' s)

    The proposition that a sInfHom commutes with arbitrary infima/meets

structure FrameHom (α : Type u_8) (β : Type u_9) [CompleteLattice α] [CompleteLattice β] extends InfTopHom α β :
Type (max u_8 u_9)

The type of frame homomorphisms from α to β. They preserve finite meets and arbitrary joins.

  • toFun : αβ
  • map_inf' (a b : α) : self.toFun (a b) = self.toFun a self.toFun b
  • map_top' : self.toFun =
  • map_sSup' (s : Set α) : self.toFun (sSup s) = sSup (self.toFun '' s)

    The proposition that frame homomorphisms commute with arbitrary suprema/joins.

structure CompleteLatticeHom (α : Type u_8) (β : Type u_9) [CompleteLattice α] [CompleteLattice β] extends sInfHom α β :
Type (max u_8 u_9)

The type of complete lattice homomorphisms from α to β.

  • toFun : αβ
  • map_sInf' (s : Set α) : self.toFun (sInf s) = sInf (self.toFun '' s)
  • map_sSup' (s : Set α) : self.toFun (sSup s) = sSup (self.toFun '' s)

    The proposition that complete lattice homomorphism commutes with arbitrary suprema/joins.

class sSupHomClass (F : Type u_8) (α : Type u_9) (β : Type u_10) [SupSet α] [SupSet β] [FunLike F α β] :

sSupHomClass F α β states that F is a type of -preserving morphisms.

You should extend this class when you extend sSupHom.

  • map_sSup (f : F) (s : Set α) : f (sSup s) = sSup (f '' s)

    The proposition that members of sSupHomClasss commute with arbitrary suprema/joins.

Instances
    class sInfHomClass (F : Type u_8) (α : Type u_9) (β : Type u_10) [InfSet α] [InfSet β] [FunLike F α β] :

    sInfHomClass F α β states that F is a type of -preserving morphisms.

    You should extend this class when you extend sInfHom.

    • map_sInf (f : F) (s : Set α) : f (sInf s) = sInf (f '' s)

      The proposition that members of sInfHomClasss commute with arbitrary infima/meets.

    Instances
      class FrameHomClass (F : Type u_8) (α : Type u_9) (β : Type u_10) [CompleteLattice α] [CompleteLattice β] [FunLike F α β] extends InfTopHomClass F α β :

      FrameHomClass F α β states that F is a type of frame morphisms. They preserve and .

      You should extend this class when you extend FrameHom.

      Instances
        class CompleteLatticeHomClass (F : Type u_8) (α : Type u_9) (β : Type u_10) [CompleteLattice α] [CompleteLattice β] [FunLike F α β] extends sInfHomClass F α β :

        CompleteLatticeHomClass F α β states that F is a type of complete lattice morphisms.

        You should extend this class when you extend CompleteLatticeHom.

        Instances
          @[simp]
          theorem map_iSup {F : Type u_1} {α : Type u_2} {β : Type u_3} {ι : Sort u_6} [FunLike F α β] [SupSet α] [SupSet β] [sSupHomClass F α β] (f : F) (g : ια) :
          f (⨆ (i : ι), g i) = ⨆ (i : ι), f (g i)
          theorem map_iSup₂ {F : Type u_1} {α : Type u_2} {β : Type u_3} {ι : Sort u_6} {κ : ιSort u_7} [FunLike F α β] [SupSet α] [SupSet β] [sSupHomClass F α β] (f : F) (g : (i : ι) → κ iα) :
          f (⨆ (i : ι), ⨆ (j : κ i), g i j) = ⨆ (i : ι), ⨆ (j : κ i), f (g i j)
          @[simp]
          theorem map_iInf {F : Type u_1} {α : Type u_2} {β : Type u_3} {ι : Sort u_6} [FunLike F α β] [InfSet α] [InfSet β] [sInfHomClass F α β] (f : F) (g : ια) :
          f (⨅ (i : ι), g i) = ⨅ (i : ι), f (g i)
          theorem map_iInf₂ {F : Type u_1} {α : Type u_2} {β : Type u_3} {ι : Sort u_6} {κ : ιSort u_7} [FunLike F α β] [InfSet α] [InfSet β] [sInfHomClass F α β] (f : F) (g : (i : ι) → κ iα) :
          f (⨅ (i : ι), ⨅ (j : κ i), g i j) = ⨅ (i : ι), ⨅ (j : κ i), f (g i j)
          @[instance 100]
          instance sSupHomClass.toSupBotHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [CompleteLattice α] [CompleteLattice β] [sSupHomClass F α β] :
          @[instance 100]
          instance sInfHomClass.toInfTopHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [CompleteLattice α] [CompleteLattice β] [sInfHomClass F α β] :
          @[instance 100]
          instance FrameHomClass.tosSupHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [CompleteLattice α] [CompleteLattice β] [FrameHomClass F α β] :
          sSupHomClass F α β
          @[instance 100]
          instance FrameHomClass.toBoundedLatticeHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [CompleteLattice α] [CompleteLattice β] [FrameHomClass F α β] :
          @[instance 100]
          instance CompleteLatticeHomClass.toFrameHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [CompleteLattice α] [CompleteLattice β] [CompleteLatticeHomClass F α β] :
          @[instance 100]
          @[instance 100]
          instance OrderIsoClass.tosSupHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [EquivLike F α β] [CompleteLattice α] [CompleteLattice β] [OrderIsoClass F α β] :
          sSupHomClass F α β
          @[instance 100]
          instance OrderIsoClass.tosInfHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [EquivLike F α β] [CompleteLattice α] [CompleteLattice β] [OrderIsoClass F α β] :
          sInfHomClass F α β
          @[instance 100]
          instance OrderIsoClass.toCompleteLatticeHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [EquivLike F α β] [CompleteLattice α] [CompleteLattice β] [OrderIsoClass F α β] :
          def OrderIso.toCompleteLatticeHom {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : α ≃o β) :

          Reinterpret an order isomorphism as a morphism of complete lattices.

          Equations
          • f.toCompleteLatticeHom = { toFun := f, map_sInf' := , map_sSup' := }
          @[simp]
          theorem OrderIso.toCompleteLatticeHom_toFun {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : α ≃o β) (a : α) :
          f.toCompleteLatticeHom.toFun a = f a
          instance instCoeTCSSupHomOfSSupHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [SupSet α] [SupSet β] [sSupHomClass F α β] :
          CoeTC F (sSupHom α β)
          Equations
          instance instCoeTCSInfHomOfSInfHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [InfSet α] [InfSet β] [sInfHomClass F α β] :
          CoeTC F (sInfHom α β)
          Equations
          instance instCoeTCFrameHomOfFrameHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [CompleteLattice α] [CompleteLattice β] [FrameHomClass F α β] :
          CoeTC F (FrameHom α β)
          Equations
          Equations

          Supremum homomorphisms #

          instance sSupHom.instFunLike {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] :
          FunLike (sSupHom α β) α β
          Equations
          instance sSupHom.instSSupHomClass {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] :
          sSupHomClass (sSupHom α β) α β
          @[simp]
          theorem sSupHom.toFun_eq_coe {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] (f : sSupHom α β) :
          f.toFun = f
          @[simp]
          theorem sSupHom.coe_mk {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] (f : αβ) (hf : ∀ (s : Set α), f (sSup s) = sSup (f '' s)) :
          { toFun := f, map_sSup' := hf } = f
          theorem sSupHom.ext {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] {f g : sSupHom α β} (h : ∀ (a : α), f a = g a) :
          f = g
          def sSupHom.copy {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] (f : sSupHom α β) (f' : αβ) (h : f' = f) :
          sSupHom α β

          Copy of a sSupHom with a new toFun equal to the old one. Useful to fix definitional equalities.

          Equations
          • f.copy f' h = { toFun := f', map_sSup' := }
          @[simp]
          theorem sSupHom.coe_copy {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] (f : sSupHom α β) (f' : αβ) (h : f' = f) :
          (f.copy f' h) = f'
          theorem sSupHom.copy_eq {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] (f : sSupHom α β) (f' : αβ) (h : f' = f) :
          f.copy f' h = f
          def sSupHom.id (α : Type u_2) [SupSet α] :
          sSupHom α α

          id as a sSupHom.

          Equations
          instance sSupHom.instInhabited (α : Type u_2) [SupSet α] :
          Equations
          @[simp]
          theorem sSupHom.coe_id (α : Type u_2) [SupSet α] :
          (sSupHom.id α) = id
          @[simp]
          theorem sSupHom.id_apply {α : Type u_2} [SupSet α] (a : α) :
          (sSupHom.id α) a = a
          def sSupHom.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [SupSet α] [SupSet β] [SupSet γ] (f : sSupHom β γ) (g : sSupHom α β) :
          sSupHom α γ

          Composition of sSupHoms as a sSupHom.

          Equations
          • f.comp g = { toFun := f g, map_sSup' := }
          @[simp]
          theorem sSupHom.coe_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [SupSet α] [SupSet β] [SupSet γ] (f : sSupHom β γ) (g : sSupHom α β) :
          (f.comp g) = f g
          @[simp]
          theorem sSupHom.comp_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [SupSet α] [SupSet β] [SupSet γ] (f : sSupHom β γ) (g : sSupHom α β) (a : α) :
          (f.comp g) a = f (g a)
          @[simp]
          theorem sSupHom.comp_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [SupSet α] [SupSet β] [SupSet γ] [SupSet δ] (f : sSupHom γ δ) (g : sSupHom β γ) (h : sSupHom α β) :
          (f.comp g).comp h = f.comp (g.comp h)
          @[simp]
          theorem sSupHom.comp_id {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] (f : sSupHom α β) :
          f.comp (sSupHom.id α) = f
          @[simp]
          theorem sSupHom.id_comp {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] (f : sSupHom α β) :
          (sSupHom.id β).comp f = f
          @[simp]
          theorem sSupHom.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [SupSet α] [SupSet β] [SupSet γ] {g₁ g₂ : sSupHom β γ} {f : sSupHom α β} (hf : Function.Surjective f) :
          g₁.comp f = g₂.comp f g₁ = g₂
          @[simp]
          theorem sSupHom.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [SupSet α] [SupSet β] [SupSet γ] {g : sSupHom β γ} {f₁ f₂ : sSupHom α β} (hg : Function.Injective g) :
          g.comp f₁ = g.comp f₂ f₁ = f₂
          instance sSupHom.instPartialOrder {α : Type u_2} {β : Type u_3} [SupSet α] {x✝ : CompleteLattice β} :
          Equations
          instance sSupHom.instBot {α : Type u_2} {β : Type u_3} [SupSet α] {x✝ : CompleteLattice β} :
          Bot (sSupHom α β)
          Equations
          instance sSupHom.instOrderBot {α : Type u_2} {β : Type u_3} [SupSet α] {x✝ : CompleteLattice β} :
          Equations
          @[simp]
          theorem sSupHom.coe_bot {α : Type u_2} {β : Type u_3} [SupSet α] {x✝ : CompleteLattice β} :
          =
          @[simp]
          theorem sSupHom.bot_apply {α : Type u_2} {β : Type u_3} [SupSet α] {x✝ : CompleteLattice β} (a : α) :

          Infimum homomorphisms #

          instance sInfHom.instFunLike {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] :
          FunLike (sInfHom α β) α β
          Equations
          instance sInfHom.instSInfHomClass {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] :
          sInfHomClass (sInfHom α β) α β
          @[simp]
          theorem sInfHom.toFun_eq_coe {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] (f : sInfHom α β) :
          f.toFun = f
          @[simp]
          theorem sInfHom.coe_mk {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] (f : αβ) (hf : ∀ (s : Set α), f (sInf s) = sInf (f '' s)) :
          { toFun := f, map_sInf' := hf } = f
          theorem sInfHom.ext {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] {f g : sInfHom α β} (h : ∀ (a : α), f a = g a) :
          f = g
          def sInfHom.copy {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] (f : sInfHom α β) (f' : αβ) (h : f' = f) :
          sInfHom α β

          Copy of a sInfHom with a new toFun equal to the old one. Useful to fix definitional equalities.

          Equations
          • f.copy f' h = { toFun := f', map_sInf' := }
          @[simp]
          theorem sInfHom.coe_copy {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] (f : sInfHom α β) (f' : αβ) (h : f' = f) :
          (f.copy f' h) = f'
          theorem sInfHom.copy_eq {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] (f : sInfHom α β) (f' : αβ) (h : f' = f) :
          f.copy f' h = f
          def sInfHom.id (α : Type u_2) [InfSet α] :
          sInfHom α α

          id as an sInfHom.

          Equations
          instance sInfHom.instInhabited (α : Type u_2) [InfSet α] :
          Equations
          @[simp]
          theorem sInfHom.coe_id (α : Type u_2) [InfSet α] :
          (sInfHom.id α) = id
          @[simp]
          theorem sInfHom.id_apply {α : Type u_2} [InfSet α] (a : α) :
          (sInfHom.id α) a = a
          def sInfHom.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [InfSet α] [InfSet β] [InfSet γ] (f : sInfHom β γ) (g : sInfHom α β) :
          sInfHom α γ

          Composition of sInfHoms as a sInfHom.

          Equations
          • f.comp g = { toFun := f g, map_sInf' := }
          @[simp]
          theorem sInfHom.coe_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [InfSet α] [InfSet β] [InfSet γ] (f : sInfHom β γ) (g : sInfHom α β) :
          (f.comp g) = f g
          @[simp]
          theorem sInfHom.comp_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [InfSet α] [InfSet β] [InfSet γ] (f : sInfHom β γ) (g : sInfHom α β) (a : α) :
          (f.comp g) a = f (g a)
          @[simp]
          theorem sInfHom.comp_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [InfSet α] [InfSet β] [InfSet γ] [InfSet δ] (f : sInfHom γ δ) (g : sInfHom β γ) (h : sInfHom α β) :
          (f.comp g).comp h = f.comp (g.comp h)
          @[simp]
          theorem sInfHom.comp_id {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] (f : sInfHom α β) :
          f.comp (sInfHom.id α) = f
          @[simp]
          theorem sInfHom.id_comp {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] (f : sInfHom α β) :
          (sInfHom.id β).comp f = f
          @[simp]
          theorem sInfHom.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [InfSet α] [InfSet β] [InfSet γ] {g₁ g₂ : sInfHom β γ} {f : sInfHom α β} (hf : Function.Surjective f) :
          g₁.comp f = g₂.comp f g₁ = g₂
          @[simp]
          theorem sInfHom.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [InfSet α] [InfSet β] [InfSet γ] {g : sInfHom β γ} {f₁ f₂ : sInfHom α β} (hg : Function.Injective g) :
          g.comp f₁ = g.comp f₂ f₁ = f₂
          instance sInfHom.instPartialOrder {α : Type u_2} {β : Type u_3} [InfSet α] [CompleteLattice β] :
          Equations
          instance sInfHom.instTop {α : Type u_2} {β : Type u_3} [InfSet α] [CompleteLattice β] :
          Top (sInfHom α β)
          Equations
          instance sInfHom.instOrderTop {α : Type u_2} {β : Type u_3} [InfSet α] [CompleteLattice β] :
          Equations
          @[simp]
          theorem sInfHom.coe_top {α : Type u_2} {β : Type u_3} [InfSet α] [CompleteLattice β] :
          =
          @[simp]
          theorem sInfHom.top_apply {α : Type u_2} {β : Type u_3} [InfSet α] [CompleteLattice β] (a : α) :

          Frame homomorphisms #

          instance FrameHom.instFunLike {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] :
          FunLike (FrameHom α β) α β
          Equations
          instance FrameHom.instFrameHomClass {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] :
          FrameHomClass (FrameHom α β) α β
          def FrameHom.toLatticeHom {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : FrameHom α β) :

          Reinterpret a FrameHom as a LatticeHom.

          Equations
          • f.toLatticeHom = { toFun := f, map_sup' := , map_inf' := }
          theorem FrameHom.toFun_eq_coe {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : FrameHom α β) :
          f.toFun = f
          @[simp]
          theorem FrameHom.coe_toInfTopHom {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : FrameHom α β) :
          f.toInfTopHom = f
          @[simp]
          theorem FrameHom.coe_toLatticeHom {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : FrameHom α β) :
          f.toLatticeHom = f
          @[simp]
          theorem FrameHom.coe_mk {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : InfTopHom α β) (hf : ∀ (s : Set α), f.toFun (sSup s) = sSup (f.toFun '' s)) :
          { toInfTopHom := f, map_sSup' := hf } = f
          theorem FrameHom.ext {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] {f g : FrameHom α β} (h : ∀ (a : α), f a = g a) :
          f = g
          def FrameHom.copy {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : FrameHom α β) (f' : αβ) (h : f' = f) :
          FrameHom α β

          Copy of a FrameHom with a new toFun equal to the old one. Useful to fix definitional equalities.

          Equations
          • f.copy f' h = { toInfTopHom := f.copy f' h, map_sSup' := }
          @[simp]
          theorem FrameHom.coe_copy {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : FrameHom α β) (f' : αβ) (h : f' = f) :
          (f.copy f' h) = f'
          theorem FrameHom.copy_eq {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : FrameHom α β) (f' : αβ) (h : f' = f) :
          f.copy f' h = f
          def FrameHom.id (α : Type u_2) [CompleteLattice α] :
          FrameHom α α

          id as a FrameHom.

          Equations
          Equations
          @[simp]
          theorem FrameHom.coe_id (α : Type u_2) [CompleteLattice α] :
          (FrameHom.id α) = id
          @[simp]
          theorem FrameHom.id_apply {α : Type u_2} [CompleteLattice α] (a : α) :
          (FrameHom.id α) a = a
          def FrameHom.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] (f : FrameHom β γ) (g : FrameHom α β) :
          FrameHom α γ

          Composition of FrameHoms as a FrameHom.

          Equations
          • f.comp g = { toInfTopHom := f.comp g.toInfTopHom, map_sSup' := }
          @[simp]
          theorem FrameHom.coe_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] (f : FrameHom β γ) (g : FrameHom α β) :
          (f.comp g) = f g
          @[simp]
          theorem FrameHom.comp_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] (f : FrameHom β γ) (g : FrameHom α β) (a : α) :
          (f.comp g) a = f (g a)
          @[simp]
          theorem FrameHom.comp_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] [CompleteLattice δ] (f : FrameHom γ δ) (g : FrameHom β γ) (h : FrameHom α β) :
          (f.comp g).comp h = f.comp (g.comp h)
          @[simp]
          theorem FrameHom.comp_id {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : FrameHom α β) :
          f.comp (FrameHom.id α) = f
          @[simp]
          theorem FrameHom.id_comp {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : FrameHom α β) :
          (FrameHom.id β).comp f = f
          @[simp]
          theorem FrameHom.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] {g₁ g₂ : FrameHom β γ} {f : FrameHom α β} (hf : Function.Surjective f) :
          g₁.comp f = g₂.comp f g₁ = g₂
          @[simp]
          theorem FrameHom.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] {g : FrameHom β γ} {f₁ f₂ : FrameHom α β} (hg : Function.Injective g) :
          g.comp f₁ = g.comp f₂ f₁ = f₂
          instance FrameHom.instPartialOrder {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] :
          Equations

          Complete lattice homomorphisms #

          instance CompleteLatticeHom.instFunLike {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] :
          Equations
          def CompleteLatticeHom.tosSupHom {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) :
          sSupHom α β

          Reinterpret a CompleteLatticeHom as a sSupHom.

          Equations
          • f.tosSupHom = { toFun := f, map_sSup' := }

          Reinterpret a CompleteLatticeHom as a BoundedLatticeHom.

          Equations
          • f.toBoundedLatticeHom = { toFun := f, map_sup' := , map_inf' := , map_top' := , map_bot' := }
          theorem CompleteLatticeHom.toFun_eq_coe {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) :
          f.toFun = f
          @[simp]
          theorem CompleteLatticeHom.coe_tosInfHom {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) :
          f.tosInfHom = f
          @[simp]
          theorem CompleteLatticeHom.coe_tosSupHom {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) :
          f.tosSupHom = f
          @[simp]
          theorem CompleteLatticeHom.coe_toBoundedLatticeHom {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) :
          f.toBoundedLatticeHom = f
          @[simp]
          theorem CompleteLatticeHom.coe_mk {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : sInfHom α β) (hf : ∀ (s : Set α), f.toFun (sSup s) = sSup (f.toFun '' s)) :
          { tosInfHom := f, map_sSup' := hf } = f
          theorem CompleteLatticeHom.ext {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] {f g : CompleteLatticeHom α β} (h : ∀ (a : α), f a = g a) :
          f = g
          def CompleteLatticeHom.copy {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) (f' : αβ) (h : f' = f) :

          Copy of a CompleteLatticeHom with a new toFun equal to the old one. Useful to fix definitional equalities.

          Equations
          • f.copy f' h = { tosInfHom := f.copy f' h, map_sSup' := }
          @[simp]
          theorem CompleteLatticeHom.coe_copy {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) (f' : αβ) (h : f' = f) :
          (f.copy f' h) = f'
          theorem CompleteLatticeHom.copy_eq {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) (f' : αβ) (h : f' = f) :
          f.copy f' h = f

          id as a CompleteLatticeHom.

          Equations
          @[simp]
          theorem CompleteLatticeHom.id_apply {α : Type u_2} [CompleteLattice α] (a : α) :
          def CompleteLatticeHom.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] (f : CompleteLatticeHom β γ) (g : CompleteLatticeHom α β) :

          Composition of CompleteLatticeHoms as a CompleteLatticeHom.

          Equations
          • f.comp g = { tosInfHom := f.comp g.tosInfHom, map_sSup' := }
          @[simp]
          theorem CompleteLatticeHom.coe_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] (f : CompleteLatticeHom β γ) (g : CompleteLatticeHom α β) :
          (f.comp g) = f g
          @[simp]
          theorem CompleteLatticeHom.comp_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] (f : CompleteLatticeHom β γ) (g : CompleteLatticeHom α β) (a : α) :
          (f.comp g) a = f (g a)
          @[simp]
          theorem CompleteLatticeHom.comp_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] [CompleteLattice δ] (f : CompleteLatticeHom γ δ) (g : CompleteLatticeHom β γ) (h : CompleteLatticeHom α β) :
          (f.comp g).comp h = f.comp (g.comp h)
          @[simp]
          theorem CompleteLatticeHom.comp_id {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) :
          f.comp (CompleteLatticeHom.id α) = f
          @[simp]
          theorem CompleteLatticeHom.id_comp {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) :
          (CompleteLatticeHom.id β).comp f = f
          @[simp]
          theorem CompleteLatticeHom.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] {g₁ g₂ : CompleteLatticeHom β γ} {f : CompleteLatticeHom α β} (hf : Function.Surjective f) :
          g₁.comp f = g₂.comp f g₁ = g₂
          @[simp]
          theorem CompleteLatticeHom.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] {g : CompleteLatticeHom β γ} {f₁ f₂ : CompleteLatticeHom α β} (hg : Function.Injective g) :
          g.comp f₁ = g.comp f₂ f₁ = f₂

          Dual homs #

          def sSupHom.dual {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] :

          Reinterpret a -homomorphism as an -homomorphism between the dual orders.

          Equations
          • One or more equations did not get rendered due to their size.
          @[simp]
          theorem sSupHom.dual_apply_toFun {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] (f : sSupHom α β) (a✝ : αᵒᵈ) :
          (sSupHom.dual f).toFun a✝ = (OrderDual.toDual f OrderDual.ofDual) a✝
          @[simp]
          theorem sSupHom.dual_symm_apply_toFun {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] (f : sInfHom αᵒᵈ βᵒᵈ) (a✝ : α) :
          (sSupHom.dual.symm f) a✝ = (OrderDual.ofDual f OrderDual.toDual) a✝
          @[simp]
          theorem sSupHom.dual_id {α : Type u_2} [SupSet α] :
          sSupHom.dual (sSupHom.id α) = sInfHom.id αᵒᵈ
          @[simp]
          theorem sSupHom.dual_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [SupSet α] [SupSet β] [SupSet γ] (g : sSupHom β γ) (f : sSupHom α β) :
          sSupHom.dual (g.comp f) = (sSupHom.dual g).comp (sSupHom.dual f)
          @[simp]
          @[simp]
          theorem sSupHom.symm_dual_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [SupSet α] [SupSet β] [SupSet γ] (g : sInfHom βᵒᵈ γᵒᵈ) (f : sInfHom αᵒᵈ βᵒᵈ) :
          sSupHom.dual.symm (g.comp f) = (sSupHom.dual.symm g).comp (sSupHom.dual.symm f)
          def sInfHom.dual {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] :

          Reinterpret an -homomorphism as a -homomorphism between the dual orders.

          Equations
          • One or more equations did not get rendered due to their size.
          @[simp]
          theorem sInfHom.dual_apply_toFun {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] (f : sInfHom α β) (a✝ : αᵒᵈ) :
          (sInfHom.dual f) a✝ = (OrderDual.toDual f OrderDual.ofDual) a✝
          @[simp]
          theorem sInfHom.dual_symm_apply_toFun {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] (f : sSupHom αᵒᵈ βᵒᵈ) (a✝ : α) :
          (sInfHom.dual.symm f).toFun a✝ = (OrderDual.ofDual f OrderDual.toDual) a✝
          @[simp]
          theorem sInfHom.dual_id {α : Type u_2} [InfSet α] :
          sInfHom.dual (sInfHom.id α) = sSupHom.id αᵒᵈ
          @[simp]
          theorem sInfHom.dual_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [InfSet α] [InfSet β] [InfSet γ] (g : sInfHom β γ) (f : sInfHom α β) :
          sInfHom.dual (g.comp f) = (sInfHom.dual g).comp (sInfHom.dual f)
          @[simp]
          @[simp]
          theorem sInfHom.symm_dual_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [InfSet α] [InfSet β] [InfSet γ] (g : sSupHom βᵒᵈ γᵒᵈ) (f : sSupHom αᵒᵈ βᵒᵈ) :
          sInfHom.dual.symm (g.comp f) = (sInfHom.dual.symm g).comp (sInfHom.dual.symm f)

          Reinterpret a complete lattice homomorphism as a complete lattice homomorphism between the dual lattices.

          Equations
          • One or more equations did not get rendered due to their size.
          @[simp]
          theorem CompleteLatticeHom.dual_symm_apply_toFun {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom αᵒᵈ βᵒᵈ) (a✝ : αᵒᵈᵒᵈ) :
          (CompleteLatticeHom.dual.symm f).toFun a✝ = OrderDual.toDual (f (OrderDual.ofDual a✝))
          @[simp]
          theorem CompleteLatticeHom.dual_apply_toFun {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) (a✝ : αᵒᵈ) :
          (CompleteLatticeHom.dual f).toFun a✝ = OrderDual.toDual (f (OrderDual.ofDual a✝))
          @[simp]
          @[simp]
          theorem CompleteLatticeHom.dual_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] (g : CompleteLatticeHom β γ) (f : CompleteLatticeHom α β) :
          CompleteLatticeHom.dual (g.comp f) = (CompleteLatticeHom.dual g).comp (CompleteLatticeHom.dual f)

          Concrete homs #

          def CompleteLatticeHom.setPreimage {α : Type u_2} {β : Type u_3} (f : αβ) :

          Set.preimage as a complete lattice homomorphism.

          See also sSupHom.setImage.

          Equations
          @[simp]
          theorem CompleteLatticeHom.coe_setPreimage {α : Type u_2} {β : Type u_3} (f : αβ) :
          @[simp]
          theorem CompleteLatticeHom.setPreimage_apply {α : Type u_2} {β : Type u_3} (f : αβ) (s : Set β) :
          theorem CompleteLatticeHom.setPreimage_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} (g : βγ) (f : αβ) :
          theorem Set.image_sSup {α : Type u_2} {β : Type u_3} {f : αβ} (s : Set (Set α)) :
          f '' sSup s = sSup (Set.image f '' s)
          def sSupHom.setImage {α : Type u_2} {β : Type u_3} (f : αβ) :
          sSupHom (Set α) (Set β)

          Using Set.image, a function between types yields a sSupHom between their lattices of subsets.

          See also CompleteLatticeHom.setPreimage.

          Equations
          @[simp]
          theorem sSupHom.setImage_toFun {α : Type u_2} {β : Type u_3} (f : αβ) (s : Set α) :
          def Equiv.toOrderIsoSet {α : Type u_2} {β : Type u_3} (e : α β) :
          Set α ≃o Set β

          An equivalence of types yields an order isomorphism between their lattices of subsets.

          Equations
          • e.toOrderIsoSet = { toFun := fun (s : Set α) => e '' s, invFun := fun (s : Set β) => e.symm '' s, left_inv := , right_inv := , map_rel_iff' := }
          @[simp]
          theorem Equiv.toOrderIsoSet_symm_apply {α : Type u_2} {β : Type u_3} (e : α β) (s : Set β) :
          (RelIso.symm e.toOrderIsoSet) s = e.symm '' s
          @[simp]
          theorem Equiv.toOrderIsoSet_apply {α : Type u_2} {β : Type u_3} (e : α β) (s : Set α) :
          e.toOrderIsoSet s = e '' s
          def supsSupHom {α : Type u_2} [CompleteLattice α] :
          sSupHom (α × α) α

          The map (a, b) ↦ a ⊔ b as a sSupHom.

          Equations
          def infsInfHom {α : Type u_2} [CompleteLattice α] :
          sInfHom (α × α) α

          The map (a, b) ↦ a ⊓ b as an sInfHom.

          Equations
          @[simp]
          theorem supsSupHom_apply {α : Type u_2} [CompleteLattice α] (x : α × α) :
          supsSupHom x = x.1 x.2
          @[simp]
          theorem infsInfHom_apply {α : Type u_2} [CompleteLattice α] (x : α × α) :
          infsInfHom x = x.1 x.2