Documentation

Mathlib.LinearAlgebra.Quotient.Basic

Quotients by submodules #

Main definitions #

def Submodule.Quotient.restrictScalarsEquiv {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (S : Type u_3) [Ring S] [SMul S R] [Module S M] [IsScalarTower S R M] (P : Submodule R M) :

The quotient of P as an S-submodule is the same as the quotient of P as an R-submodule, where P : Submodule R M.

Equations
Instances For
    theorem Submodule.Quotient.nontrivial_of_lt_top {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) (h : p < ) :
    instance Submodule.QuotientBot.infinite {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] [Infinite M] :
    Equations
    • =
    instance Submodule.QuotientTop.unique {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] :
    Equations
    • Submodule.QuotientTop.unique = { default := 0, uniq := }
    instance Submodule.QuotientTop.fintype {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] :
    Equations
    theorem Submodule.unique_quotient_iff_eq_top {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] {p : Submodule R M} :
    noncomputable instance Submodule.Quotient.fintype {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] [Fintype M] (S : Submodule R M) :
    Fintype (M S)
    Equations
    theorem Submodule.card_eq_card_quotient_mul_card {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (S : Submodule R M) :
    theorem Submodule.strictMono_comap_prod_map {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) :
    StrictMono fun (m : Submodule R M) => (Submodule.comap p.subtype m, Submodule.map p.mkQ m)
    def Submodule.liftQ {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) {R₂ : Type u_3} {M₂ : Type u_4} [Ring R₂] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} (f : M →ₛₗ[τ₁₂] M₂) (h : p LinearMap.ker f) :
    M p →ₛₗ[τ₁₂] M₂

    The map from the quotient of M by a submodule p to M₂ induced by a linear map f : M → M₂ vanishing on p, as a linear map.

    Equations
    • p.liftQ f h = { toFun := (↑(QuotientAddGroup.lift p.toAddSubgroup f.toAddMonoidHom h)).toFun, map_add' := , map_smul' := }
    Instances For
      @[simp]
      theorem Submodule.liftQ_apply {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) {R₂ : Type u_3} {M₂ : Type u_4} [Ring R₂] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} (f : M →ₛₗ[τ₁₂] M₂) {h : p LinearMap.ker f} (x : M) :
      (p.liftQ f h) (Submodule.Quotient.mk x) = f x
      @[simp]
      theorem Submodule.liftQ_mkQ {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) {R₂ : Type u_3} {M₂ : Type u_4} [Ring R₂] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} (f : M →ₛₗ[τ₁₂] M₂) (h : p LinearMap.ker f) :
      (p.liftQ f h).comp p.mkQ = f
      theorem Submodule.pi_liftQ_eq_liftQ_pi {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] {ι : Type u_5} {N : ιType u_6} [(i : ι) → AddCommGroup (N i)] [(i : ι) → Module R (N i)] (f : (i : ι) → M →ₗ[R] N i) {p : Submodule R M} (h : ∀ (i : ι), p LinearMap.ker (f i)) :
      (LinearMap.pi fun (i : ι) => p.liftQ (f i) ) = p.liftQ (LinearMap.pi f)
      def Submodule.liftQSpanSingleton {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] {R₂ : Type u_3} {M₂ : Type u_4} [Ring R₂] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} (x : M) (f : M →ₛₗ[τ₁₂] M₂) (h : f x = 0) :
      M Submodule.span R {x} →ₛₗ[τ₁₂] M₂

      Special case of submodule.liftQ when p is the span of x. In this case, the condition on f simply becomes vanishing at x.

      Equations
      Instances For
        @[simp]
        theorem Submodule.liftQSpanSingleton_apply {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] {R₂ : Type u_3} {M₂ : Type u_4} [Ring R₂] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} (x : M) (f : M →ₛₗ[τ₁₂] M₂) (h : f x = 0) (y : M) :
        @[simp]
        theorem Submodule.range_mkQ {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) :
        @[simp]
        theorem Submodule.ker_mkQ {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) :
        theorem Submodule.le_comap_mkQ {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) (p' : Submodule R (M p)) :
        p Submodule.comap p.mkQ p'
        @[simp]
        theorem Submodule.mkQ_map_self {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) :
        @[simp]
        theorem Submodule.comap_map_mkQ {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) (p' : Submodule R M) :
        Submodule.comap p.mkQ (Submodule.map p.mkQ p') = p p'
        @[simp]
        theorem Submodule.map_mkQ_eq_top {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) (p' : Submodule R M) :
        Submodule.map p.mkQ p' = p p' =
        def Submodule.mapQ {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) {R₂ : Type u_3} {M₂ : Type u_4} [Ring R₂] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} (q : Submodule R₂ M₂) (f : M →ₛₗ[τ₁₂] M₂) (h : p Submodule.comap f q) :
        M p →ₛₗ[τ₁₂] M₂ q

        The map from the quotient of M by submodule p to the quotient of M₂ by submodule q along f : M → M₂ is linear.

        Equations
        • p.mapQ q f h = p.liftQ (q.mkQ.comp f)
        Instances For
          @[simp]
          theorem Submodule.mapQ_apply {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) {R₂ : Type u_3} {M₂ : Type u_4} [Ring R₂] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} (q : Submodule R₂ M₂) (f : M →ₛₗ[τ₁₂] M₂) {h : p Submodule.comap f q} (x : M) :
          theorem Submodule.mapQ_mkQ {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) {R₂ : Type u_3} {M₂ : Type u_4} [Ring R₂] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} (q : Submodule R₂ M₂) (f : M →ₛₗ[τ₁₂] M₂) {h : p Submodule.comap f q} :
          (p.mapQ q f h).comp p.mkQ = q.mkQ.comp f
          @[simp]
          theorem Submodule.mapQ_zero {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) {R₂ : Type u_3} {M₂ : Type u_4} [Ring R₂] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} (q : Submodule R₂ M₂) (h : optParam (p Submodule.comap 0 q) ) :
          p.mapQ q 0 h = 0
          theorem Submodule.mapQ_comp {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) {R₂ : Type u_3} {M₂ : Type u_4} [Ring R₂] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} {R₃ : Type u_5} {M₃ : Type u_6} [Ring R₃] [AddCommGroup M₃] [Module R₃ M₃] (p₂ : Submodule R₂ M₂) (p₃ : Submodule R₃ M₃) {τ₂₃ : R₂ →+* R₃} {τ₁₃ : R →+* R₃} [RingHomCompTriple τ₁₂ τ₂₃ τ₁₃] (f : M →ₛₗ[τ₁₂] M₂) (g : M₂ →ₛₗ[τ₂₃] M₃) (hf : p Submodule.comap f p₂) (hg : p₂ Submodule.comap g p₃) (h : optParam (p Submodule.comap f (Submodule.comap g p₃)) ) :
          p.mapQ p₃ (g.comp f) h = (p₂.mapQ p₃ g hg).comp (p.mapQ p₂ f hf)

          Given submodules p ⊆ M, p₂ ⊆ M₂, p₃ ⊆ M₃ and maps f : M → M₂, g : M₂ → M₃ inducing mapQ f : M ⧸ p → M₂ ⧸ p₂ and mapQ g : M₂ ⧸ p₂ → M₃ ⧸ p₃ then mapQ (g ∘ f) = (mapQ g) ∘ (mapQ f).

          @[simp]
          theorem Submodule.mapQ_id {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) (h : optParam (p Submodule.comap LinearMap.id p) ) :
          p.mapQ p LinearMap.id h = LinearMap.id
          theorem Submodule.mapQ_pow {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) {f : M →ₗ[R] M} (h : p Submodule.comap f p) (k : ) (h' : optParam (p Submodule.comap (f ^ k) p) ) :
          p.mapQ p (f ^ k) h' = p.mapQ p f h ^ k
          theorem Submodule.comap_liftQ {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) {R₂ : Type u_3} {M₂ : Type u_4} [Ring R₂] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} (q : Submodule R₂ M₂) (f : M →ₛₗ[τ₁₂] M₂) (h : p LinearMap.ker f) :
          Submodule.comap (p.liftQ f h) q = Submodule.map p.mkQ (Submodule.comap f q)
          theorem Submodule.map_liftQ {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) {R₂ : Type u_3} {M₂ : Type u_4} [Ring R₂] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} [RingHomSurjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) (h : p LinearMap.ker f) (q : Submodule R (M p)) :
          Submodule.map (p.liftQ f h) q = Submodule.map f (Submodule.comap p.mkQ q)
          theorem Submodule.ker_liftQ {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) {R₂ : Type u_3} {M₂ : Type u_4} [Ring R₂] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} (f : M →ₛₗ[τ₁₂] M₂) (h : p LinearMap.ker f) :
          LinearMap.ker (p.liftQ f h) = Submodule.map p.mkQ (LinearMap.ker f)
          theorem Submodule.range_liftQ {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) {R₂ : Type u_3} {M₂ : Type u_4} [Ring R₂] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} [RingHomSurjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) (h : p LinearMap.ker f) :
          theorem Submodule.ker_liftQ_eq_bot {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) {R₂ : Type u_3} {M₂ : Type u_4} [Ring R₂] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} (f : M →ₛₗ[τ₁₂] M₂) (h : p LinearMap.ker f) (h' : LinearMap.ker f p) :
          LinearMap.ker (p.liftQ f h) =
          theorem Submodule.ker_liftQ_eq_bot' {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) {R₂ : Type u_3} {M₂ : Type u_4} [Ring R₂] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} (f : M →ₛₗ[τ₁₂] M₂) (h : p = LinearMap.ker f) :
          LinearMap.ker (p.liftQ f ) =
          def Submodule.comapMkQRelIso {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) :
          Submodule R (M p) ≃o { p' : Submodule R M // p p' }

          The correspondence theorem for modules: there is an order isomorphism between submodules of the quotient of M by p, and submodules of M larger than p.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            def Submodule.comapMkQOrderEmbedding {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) :

            The ordering on submodules of the quotient of M by p embeds into the ordering on submodules of M.

            Equations
            Instances For
              @[simp]
              theorem Submodule.comapMkQOrderEmbedding_eq {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) (p' : Submodule R (M p)) :
              p.comapMkQOrderEmbedding p' = Submodule.comap p.mkQ p'
              theorem Submodule.span_preimage_eq {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] {R₂ : Type u_3} {M₂ : Type u_4} [Ring R₂] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} [RingHomSurjective τ₁₂] {f : M →ₛₗ[τ₁₂] M₂} {s : Set M₂} (h₀ : s.Nonempty) (h₁ : s (LinearMap.range f)) :
              @[simp]
              theorem Submodule.Quotient.equiv_symm_apply {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] (P : Submodule R M) (Q : Submodule R N) (f : M ≃ₗ[R] N) (hf : Submodule.map f P = Q) (a : N Q) :
              (Submodule.Quotient.equiv P Q f hf).symm a = (Q.mapQ P f.symm ) a
              @[simp]
              theorem Submodule.Quotient.equiv_apply {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] (P : Submodule R M) (Q : Submodule R N) (f : M ≃ₗ[R] N) (hf : Submodule.map f P = Q) (a : M P) :
              (Submodule.Quotient.equiv P Q f hf) a = (P.mapQ Q f ) a
              def Submodule.Quotient.equiv {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] (P : Submodule R M) (Q : Submodule R N) (f : M ≃ₗ[R] N) (hf : Submodule.map f P = Q) :
              (M P) ≃ₗ[R] N Q

              If P is a submodule of M and Q a submodule of N, and f : M ≃ₗ N maps P to Q, then M ⧸ P is equivalent to N ⧸ Q.

              Equations
              • Submodule.Quotient.equiv P Q f hf = { toFun := (P.mapQ Q f ), map_add' := , map_smul' := , invFun := (Q.mapQ P f.symm ), left_inv := , right_inv := }
              Instances For
                @[simp]
                theorem Submodule.Quotient.equiv_symm {R : Type u_5} {M : Type u_6} {N : Type u_7} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : Submodule R M) (Q : Submodule R N) (f : M ≃ₗ[R] N) (hf : Submodule.map f P = Q) :
                (Submodule.Quotient.equiv P Q f hf).symm = Submodule.Quotient.equiv Q P f.symm
                @[simp]
                theorem Submodule.Quotient.equiv_trans {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] {N : Type u_5} {O : Type u_6} [AddCommGroup N] [Module R N] [AddCommGroup O] [Module R O] (P : Submodule R M) (Q : Submodule R N) (S : Submodule R O) (e : M ≃ₗ[R] N) (f : N ≃ₗ[R] O) (he : Submodule.map e P = Q) (hf : Submodule.map f Q = S) (hef : Submodule.map (e ≪≫ₗ f) P = S) :
                Submodule.Quotient.equiv P S (e ≪≫ₗ f) hef = Submodule.Quotient.equiv P Q e he ≪≫ₗ Submodule.Quotient.equiv Q S f hf
                theorem LinearMap.range_mkQ_comp {R : Type u_1} {M : Type u_2} {R₂ : Type u_3} {M₂ : Type u_4} [Ring R] [Ring R₂] [AddCommMonoid M] [AddCommGroup M₂] [Module R M] [Module R₂ M₂] {τ₁₂ : R →+* R₂} [RingHomSurjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) :
                (LinearMap.range f).mkQ.comp f = 0
                theorem LinearMap.ker_le_range_iff {R : Type u_1} {M : Type u_2} {R₂ : Type u_3} {M₂ : Type u_4} {R₃ : Type u_5} {M₃ : Type u_6} [Ring R] [Ring R₂] [Ring R₃] [AddCommMonoid M] [AddCommGroup M₂] [AddCommMonoid M₃] [Module R M] [Module R₂ M₂] [Module R₃ M₃] {τ₁₂ : R →+* R₂} {τ₂₃ : R₂ →+* R₃} [RingHomSurjective τ₁₂] {f : M →ₛₗ[τ₁₂] M₂} {g : M₂ →ₛₗ[τ₂₃] M₃} :
                theorem LinearMap.range_eq_top_of_cancel {R : Type u_1} {M : Type u_2} {R₂ : Type u_3} {M₂ : Type u_4} [Ring R] [Ring R₂] [AddCommMonoid M] [AddCommGroup M₂] [Module R M] [Module R₂ M₂] {τ₁₂ : R →+* R₂} [RingHomSurjective τ₁₂] {f : M →ₛₗ[τ₁₂] M₂} (h : ∀ (u v : M₂ →ₗ[R₂] M₂ LinearMap.range f), u.comp f = v.comp fu = v) :

                An epimorphism is surjective.

                def Submodule.quotEquivOfEqBot {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) (hp : p = ) :
                (M p) ≃ₗ[R] M

                If p = ⊥, then M / p ≃ₗ[R] M.

                Equations
                Instances For
                  @[simp]
                  theorem Submodule.quotEquivOfEqBot_apply_mk {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) (hp : p = ) (x : M) :
                  (p.quotEquivOfEqBot hp) (Submodule.Quotient.mk x) = x
                  @[simp]
                  theorem Submodule.quotEquivOfEqBot_symm_apply {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) (hp : p = ) (x : M) :
                  (p.quotEquivOfEqBot hp).symm x = Submodule.Quotient.mk x
                  @[simp]
                  theorem Submodule.coe_quotEquivOfEqBot_symm {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) (hp : p = ) :
                  (p.quotEquivOfEqBot hp).symm = p.mkQ
                  @[simp]
                  theorem Submodule.Quotient.equiv_refl {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (P : Submodule R M) (Q : Submodule R M) (hf : Submodule.map (↑(LinearEquiv.refl R M)) P = Q) :
                  Submodule.Quotient.equiv P Q (LinearEquiv.refl R M) hf = P.quotEquivOfEq Q
                  def Submodule.mapQLinear {R : Type u_1} {M : Type u_2} {M₂ : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup M₂] [Module R M₂] (p : Submodule R M) (q : Submodule R M₂) :
                  (p.compatibleMaps q) →ₗ[R] M p →ₗ[R] M₂ q

                  Given modules M, M₂ over a commutative ring, together with submodules p ⊆ M, q ⊆ M₂, the natural map $\{f ∈ Hom(M, M₂) | f(p) ⊆ q \} \to Hom(M/p, M₂/q)$ is linear.

                  Equations
                  • p.mapQLinear q = { toFun := fun (f : (p.compatibleMaps q)) => p.mapQ q f , map_add' := , map_smul' := }
                  Instances For