Documentation

Mathlib.Data.Nat.Factors

Prime numbers #

This file deals with the factors of natural numbers.

Important declarations #

@[irreducible]

primeFactorsList n is the prime factorization of n, listed in increasing order.

Equations
Instances For
    @[irreducible]
    theorem Nat.prime_of_mem_primeFactorsList {n p : } :
    p n.primeFactorsListNat.Prime p
    theorem Nat.pos_of_mem_primeFactorsList {n p : } (h : p n.primeFactorsList) :
    0 < p
    @[irreducible]
    theorem Nat.prod_primeFactorsList {n : } :
    n 0n.primeFactorsList.prod = n
    theorem Nat.primeFactorsList_prime {p : } (hp : Nat.Prime p) :
    p.primeFactorsList = [p]
    @[irreducible]
    theorem Nat.primeFactorsList_chain {n a : } :
    (∀ (p : ), Nat.Prime pp na p)List.Chain (fun (x1 x2 : ) => x1 x2) a n.primeFactorsList
    theorem Nat.primeFactorsList_chain_2 (n : ) :
    List.Chain (fun (x1 x2 : ) => x1 x2) 2 n.primeFactorsList
    theorem Nat.primeFactorsList_chain' (n : ) :
    List.Chain' (fun (x1 x2 : ) => x1 x2) n.primeFactorsList
    theorem Nat.primeFactorsList_sorted (n : ) :
    List.Sorted (fun (x1 x2 : ) => x1 x2) n.primeFactorsList
    theorem Nat.primeFactorsList_add_two (n : ) :
    (n + 2).primeFactorsList = (n + 2).minFac :: ((n + 2) / (n + 2).minFac).primeFactorsList

    primeFactorsList can be constructed inductively by extracting minFac, for sufficiently large n.

    @[simp]
    theorem Nat.primeFactorsList_eq_nil (n : ) :
    n.primeFactorsList = [] n = 0 n = 1
    theorem Nat.eq_of_perm_primeFactorsList {a b : } (ha : a 0) (hb : b 0) (h : a.primeFactorsList.Perm b.primeFactorsList) :
    a = b
    theorem Nat.mem_primeFactorsList_iff_dvd {n p : } (hn : n 0) (hp : Nat.Prime p) :
    p n.primeFactorsList p n
    theorem Nat.dvd_of_mem_primeFactorsList {n p : } (h : p n.primeFactorsList) :
    p n
    theorem Nat.mem_primeFactorsList {n p : } (hn : n 0) :
    p n.primeFactorsList Nat.Prime p p n
    @[simp]
    theorem Nat.mem_primeFactorsList' {n p : } :
    p n.primeFactorsList Nat.Prime p p n n 0
    theorem Nat.le_of_mem_primeFactorsList {n p : } (h : p n.primeFactorsList) :
    p n
    theorem Nat.primeFactorsList_unique {n : } {l : List } (h₁ : l.prod = n) (h₂ : pl, Nat.Prime p) :
    l.Perm n.primeFactorsList

    Fundamental theorem of arithmetic

    theorem Nat.Prime.primeFactorsList_pow {p : } (hp : Nat.Prime p) (n : ) :
    (p ^ n).primeFactorsList = List.replicate n p
    theorem Nat.eq_prime_pow_of_unique_prime_dvd {n p : } (hpos : n 0) (h : ∀ {d : }, Nat.Prime dd nd = p) :
    n = p ^ n.primeFactorsList.length
    theorem Nat.perm_primeFactorsList_mul {a b : } (ha : a 0) (hb : b 0) :
    (a * b).primeFactorsList.Perm (a.primeFactorsList ++ b.primeFactorsList)

    For positive a and b, the prime factors of a * b are the union of those of a and b

    theorem Nat.perm_primeFactorsList_mul_of_coprime {a b : } (hab : a.Coprime b) :
    (a * b).primeFactorsList.Perm (a.primeFactorsList ++ b.primeFactorsList)

    For coprime a and b, the prime factors of a * b are the union of those of a and b

    theorem Nat.primeFactorsList_sublist_right {n k : } (h : k 0) :
    n.primeFactorsList.Sublist (n * k).primeFactorsList
    theorem Nat.primeFactorsList_sublist_of_dvd {n k : } (h : n k) (h' : k 0) :
    n.primeFactorsList.Sublist k.primeFactorsList
    theorem Nat.primeFactorsList_subset_right {n k : } (h : k 0) :
    n.primeFactorsList (n * k).primeFactorsList
    theorem Nat.primeFactorsList_subset_of_dvd {n k : } (h : n k) (h' : k 0) :
    n.primeFactorsList k.primeFactorsList
    theorem Nat.dvd_of_primeFactorsList_subperm {a b : } (ha : a 0) (h : a.primeFactorsList.Subperm b.primeFactorsList) :
    a b
    theorem Nat.replicate_subperm_primeFactorsList_iff {a b n : } (ha : Nat.Prime a) (hb : b 0) :
    (List.replicate n a).Subperm b.primeFactorsList a ^ n b
    theorem Nat.mem_primeFactorsList_mul {a b : } (ha : a 0) (hb : b 0) {p : } :
    p (a * b).primeFactorsList p a.primeFactorsList p b.primeFactorsList
    theorem Nat.coprime_primeFactorsList_disjoint {a b : } (hab : a.Coprime b) :
    a.primeFactorsList.Disjoint b.primeFactorsList

    The sets of factors of coprime a and b are disjoint

    theorem Nat.mem_primeFactorsList_mul_of_coprime {a b : } (hab : a.Coprime b) (p : ) :
    p (a * b).primeFactorsList p a.primeFactorsList b.primeFactorsList
    theorem Nat.mem_primeFactorsList_mul_left {p a b : } (hpa : p a.primeFactorsList) (hb : b 0) :
    p (a * b).primeFactorsList

    If p is a prime factor of a then p is also a prime factor of a * b for any b > 0

    theorem Nat.mem_primeFactorsList_mul_right {p a b : } (hpb : p b.primeFactorsList) (ha : a 0) :
    p (a * b).primeFactorsList

    If p is a prime factor of b then p is also a prime factor of a * b for any a > 0

    theorem Nat.eq_two_pow_or_exists_odd_prime_and_dvd (n : ) :
    (∃ (k : ), n = 2 ^ k) ∃ (p : ), Nat.Prime p p n Odd p