Documentation

Mathlib.Data.Complex.Exponential

Exponential Function #

This file contains the definitions of the real and complex exponential function.

theorem Complex.isCauSeq_abs_exp (z : ) :
IsCauSeq abs fun (n : ) => mFinset.range n, Complex.abs (z ^ m / m.factorial)
theorem Complex.isCauSeq_exp (z : ) :
IsCauSeq Complex.abs fun (n : ) => mFinset.range n, z ^ m / m.factorial

The Cauchy sequence consisting of partial sums of the Taylor series of the complex exponential function

Equations
Instances For
    def Complex.exp (z : ) :

    The complex exponential function, defined via its Taylor series

    Equations
    Instances For

      scoped notation for the complex exponential function

      Equations
      Instances For
        def Real.exp (x : ) :

        The real exponential function, defined as the real part of the complex exponential

        Equations
        Instances For

          scoped notation for the real exponential function

          Equations
          Instances For
            @[simp]

            the exponential function as a monoid hom from Multiplicative to

            Equations
            Instances For
              @[simp]
              theorem Complex.exp_sum {α : Type u_1} (s : Finset α) (f : α) :
              Complex.exp (∑ xs, f x) = xs, Complex.exp (f x)
              theorem Complex.exp_nsmul (x : ) (n : ) :
              theorem Complex.exp_nat_mul (x : ) (n : ) :
              Complex.exp (n * x) = Complex.exp x ^ n
              @[simp]
              theorem Complex.exp_int_mul (z : ) (n : ) :
              Complex.exp (n * z) = Complex.exp z ^ n
              @[simp]
              theorem Complex.ofReal_exp_ofReal_re (x : ) :
              (Complex.exp x).re = Complex.exp x
              @[simp]
              theorem Complex.ofReal_exp (x : ) :
              (Real.exp x) = Complex.exp x
              @[simp]
              theorem Complex.exp_ofReal_im (x : ) :
              (Complex.exp x).im = 0
              @[simp]
              theorem Real.exp_zero :
              theorem Real.exp_add (x y : ) :

              the exponential function as a monoid hom from Multiplicative to

              Equations
              Instances For
                @[simp]
                theorem Real.expMonoidHom_apply (x : Multiplicative ) :
                Real.expMonoidHom x = Real.exp (Multiplicative.toAdd x)
                theorem Real.exp_sum {α : Type u_1} (s : Finset α) (f : α) :
                Real.exp (∑ xs, f x) = xs, Real.exp (f x)
                theorem Real.exp_nsmul (x : ) (n : ) :
                Real.exp (n x) = Real.exp x ^ n
                theorem Real.exp_nat_mul (x : ) (n : ) :
                Real.exp (n * x) = Real.exp x ^ n
                @[simp]
                theorem Real.exp_ne_zero (x : ) :
                theorem Real.exp_sub (x y : ) :
                theorem Real.sum_le_exp_of_nonneg {x : } (hx : 0 x) (n : ) :
                iFinset.range n, x ^ i / i.factorial Real.exp x
                theorem Real.pow_div_factorial_le_exp (x : ) (hx : 0 x) (n : ) :
                x ^ n / n.factorial Real.exp x
                theorem Real.quadratic_le_exp_of_nonneg {x : } (hx : 0 x) :
                1 + x + x ^ 2 / 2 Real.exp x
                theorem Real.one_le_exp {x : } (hx : 0 x) :
                theorem Real.exp_pos (x : ) :
                @[simp]
                theorem Real.abs_exp (x : ) :
                theorem Real.exp_lt_exp_of_lt {x y : } (h : x < y) :
                theorem Real.exp_le_exp_of_le {x y : } (h : x y) :
                @[simp]
                theorem Real.exp_lt_exp {x y : } :
                @[simp]
                theorem Real.exp_le_exp {x y : } :
                @[simp]
                theorem Real.exp_eq_exp {x y : } :
                @[simp]
                theorem Real.exp_eq_one_iff (x : ) :
                Real.exp x = 1 x = 0
                @[simp]
                theorem Real.one_lt_exp_iff {x : } :
                1 < Real.exp x 0 < x
                @[simp]
                theorem Real.exp_lt_one_iff {x : } :
                Real.exp x < 1 x < 0
                @[simp]
                theorem Real.exp_le_one_iff {x : } :
                @[simp]
                theorem Real.one_le_exp_iff {x : } :
                theorem Complex.sum_div_factorial_le {α : Type u_1} [LinearOrderedField α] (n j : ) (hn : 0 < n) :
                mFinset.filter (fun (m : ) => n m) (Finset.range j), 1 / m.factorial n.succ / (n.factorial * n)
                theorem Complex.exp_bound {x : } (hx : Complex.abs x 1) {n : } (hn : 0 < n) :
                Complex.abs (Complex.exp x - mFinset.range n, x ^ m / m.factorial) Complex.abs x ^ n * (n.succ * (n.factorial * n)⁻¹)
                theorem Complex.exp_bound' {x : } {n : } (hx : Complex.abs x / n.succ 1 / 2) :
                Complex.abs (Complex.exp x - mFinset.range n, x ^ m / m.factorial) Complex.abs x ^ n / n.factorial * 2
                theorem Complex.abs_exp_sub_sum_le_exp_abs_sub_sum (x : ) (n : ) :
                Complex.abs (Complex.exp x - mFinset.range n, x ^ m / m.factorial) Real.exp (Complex.abs x) - mFinset.range n, Complex.abs x ^ m / m.factorial
                theorem Real.exp_bound {x : } (hx : |x| 1) {n : } (hn : 0 < n) :
                |Real.exp x - mFinset.range n, x ^ m / m.factorial| |x| ^ n * (n.succ / (n.factorial * n))
                theorem Real.exp_bound' {x : } (h1 : 0 x) (h2 : x 1) {n : } (hn : 0 < n) :
                Real.exp x mFinset.range n, x ^ m / m.factorial + x ^ n * (n + 1) / (n.factorial * n)
                theorem Real.abs_exp_sub_one_le {x : } (hx : |x| 1) :
                |Real.exp x - 1| 2 * |x|
                theorem Real.abs_exp_sub_one_sub_id_le {x : } (hx : |x| 1) :
                |Real.exp x - 1 - x| x ^ 2
                noncomputable def Real.expNear (n : ) (x r : ) :

                A finite initial segment of the exponential series, followed by an arbitrary tail. For fixed n this is just a linear map wrt r, and each map is a simple linear function of the previous (see expNear_succ), with expNear n x r ⟶ exp x as n ⟶ ∞, for any r.

                Equations
                Instances For
                  @[simp]
                  theorem Real.expNear_zero (x r : ) :
                  Real.expNear 0 x r = r
                  @[simp]
                  theorem Real.expNear_succ (n : ) (x r : ) :
                  Real.expNear (n + 1) x r = Real.expNear n x (1 + x / (n + 1) * r)
                  theorem Real.expNear_sub (n : ) (x r₁ r₂ : ) :
                  Real.expNear n x r₁ - Real.expNear n x r₂ = x ^ n / n.factorial * (r₁ - r₂)
                  theorem Real.exp_approx_end (n m : ) (x : ) (e₁ : n + 1 = m) (h : |x| 1) :
                  |Real.exp x - Real.expNear m x 0| |x| ^ m / m.factorial * ((m + 1) / m)
                  theorem Real.exp_approx_succ {n : } {x a₁ b₁ : } (m : ) (e₁ : n + 1 = m) (a₂ b₂ : ) (e : |1 + x / m * a₂ - a₁| b₁ - |x| / m * b₂) (h : |Real.exp x - Real.expNear m x a₂| |x| ^ m / m.factorial * b₂) :
                  |Real.exp x - Real.expNear n x a₁| |x| ^ n / n.factorial * b₁
                  theorem Real.exp_approx_end' {n : } {x a b : } (m : ) (e₁ : n + 1 = m) (rm : ) (er : m = rm) (h : |x| 1) (e : |1 - a| b - |x| / rm * ((rm + 1) / rm)) :
                  |Real.exp x - Real.expNear n x a| |x| ^ n / n.factorial * b
                  theorem Real.exp_1_approx_succ_eq {n : } {a₁ b₁ : } {m : } (en : n + 1 = m) {rm : } (er : m = rm) (h : |Real.exp 1 - Real.expNear m 1 ((a₁ - 1) * rm)| |1| ^ m / m.factorial * (b₁ * rm)) :
                  |Real.exp 1 - Real.expNear n 1 a₁| |1| ^ n / n.factorial * b₁
                  theorem Real.exp_approx_start (x a b : ) (h : |Real.exp x - Real.expNear 0 x a| |x| ^ 0 / (Nat.factorial 0) * b) :
                  |Real.exp x - a| b
                  theorem Real.exp_bound_div_one_sub_of_interval' {x : } (h1 : 0 < x) (h2 : x < 1) :
                  Real.exp x < 1 / (1 - x)
                  theorem Real.exp_bound_div_one_sub_of_interval {x : } (h1 : 0 x) (h2 : x < 1) :
                  Real.exp x 1 / (1 - x)
                  theorem Real.add_one_lt_exp {x : } (hx : x 0) :
                  x + 1 < Real.exp x
                  theorem Real.one_sub_lt_exp_neg {x : } (hx : x 0) :
                  1 - x < Real.exp (-x)
                  theorem Real.one_sub_div_pow_le_exp_neg {n : } {t : } (ht' : t n) :
                  (1 - t / n) ^ n Real.exp (-t)
                  theorem Real.le_inv_mul_exp (x : ) {c : } (hc : 0 < c) :
                  x c⁻¹ * Real.exp (c * x)

                  Extension for the positivity tactic: Real.exp is always positive.

                  Instances For