Documentation

Mathlib.CategoryTheory.Yoneda

The Yoneda embedding #

The Yoneda embedding as a functor yoneda : C ⥤ (Cᵒᵖ ⥤ Type v₁), along with an instance that it is FullyFaithful.

Also the Yoneda lemma, yonedaLemma : (yoneda_pairing C) ≅ (yoneda_evaluation C).

References #

The Yoneda embedding, as a functor from C into presheaves on C.

Stacks Tag 001O

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.yoneda_obj_map {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (X : C) {X✝ Y✝ : Cᵒᵖ} (f : X✝ Y✝) (g : Opposite.unop X✝ X) :
@[simp]
theorem CategoryTheory.yoneda_map_app {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X✝ Y✝ : C} (f : X✝ Y✝) (x✝ : Cᵒᵖ) (g : ((fun (X : C) => { obj := fun (Y : Cᵒᵖ) => Opposite.unop Y X, map := fun {X_1 Y : Cᵒᵖ} (f : X_1 Y) (g : (fun (Y : Cᵒᵖ) => Opposite.unop Y X) X_1) => CategoryTheory.CategoryStruct.comp f.unop g, map_id := , map_comp := }) X✝).obj x✝) :

The co-Yoneda embedding, as a functor from Cᵒᵖ into co-presheaves on C.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.coyoneda_obj_map {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (X : Cᵒᵖ) {X✝ Y✝ : C} (f : X✝ Y✝) (g : Opposite.unop X X✝) :
@[simp]
theorem CategoryTheory.coyoneda_map_app {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X✝ Y✝ : Cᵒᵖ} (f : X✝ Y✝) (x✝ : C) (g : ((fun (X : Cᵒᵖ) => { obj := fun (Y : C) => Opposite.unop X Y, map := fun {X_1 Y : C} (f : X_1 Y) (g : (fun (Y : C) => Opposite.unop X Y) X_1) => CategoryTheory.CategoryStruct.comp g f, map_id := , map_comp := }) X✝).obj x✝) :

The Yoneda embedding is fully faithful.

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Yoneda.ext {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (X Y : C) (p : {Z : C} → (Z X)(Z Y)) (q : {Z : C} → (Z Y)(Z X)) (h₁ : ∀ {Z : C} (f : Z X), q (p f) = f) (h₂ : ∀ {Z : C} (f : Z Y), p (q f) = f) (n : ∀ {Z Z' : C} (f : Z' Z) (g : Z X), p (CategoryTheory.CategoryStruct.comp f g) = CategoryTheory.CategoryStruct.comp f (p g)) :
X Y

Extensionality via Yoneda. The typical usage would be

-- Goal is `X ≅ Y`
apply yoneda.ext,
-- Goals are now functions `(Z ⟶ X) → (Z ⟶ Y)`, `(Z ⟶ Y) → (Z ⟶ X)`, and the fact that these
-- functions are inverses and natural in `Z`.
Equations
  • One or more equations did not get rendered due to their size.

If yoneda.map f is an isomorphism, so was f.

The co-Yoneda embedding is fully faithful.

Equations
  • One or more equations did not get rendered due to their size.

The morphism X ⟶ Y corresponding to a natural transformation coyoneda.obj X ⟶ coyoneda.obj Y.

Equations

If coyoneda.map f is an isomorphism, so was f.

The identity functor on Type is isomorphic to the coyoneda functor coming from PUnit.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Coyoneda.objOpOp_inv_app {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (X : C) (X✝ : Cᵒᵖ) (a✝ : (CategoryTheory.yoneda.obj X).obj X✝) :
(CategoryTheory.Coyoneda.objOpOp X).inv.app X✝ a✝ = (CategoryTheory.opEquiv (Opposite.op X) X✝).symm a✝

The data which expresses that a functor F : Cᵒᵖ ⥤ Type v is representable by Y : C.

def CategoryTheory.Functor.RepresentableBy.ofIso {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {F F' : CategoryTheory.Functor Cᵒᵖ (Type v)} {Y : C} (e : F.RepresentableBy Y) (e' : F F') :
F'.RepresentableBy Y

If F ≅ F', and F is representable, then F' is representable.

Equations
  • e.ofIso e' = { homEquiv := fun {X : C} => e.homEquiv.trans (e'.app (Opposite.op X)).toEquiv, homEquiv_comp := }
structure CategoryTheory.Functor.CorepresentableBy {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (F : CategoryTheory.Functor C (Type v)) (X : C) :
Type (max (max u₁ v) v₁)

The data which expresses that a functor F : C ⥤ Type v is corepresentable by X : C.

def CategoryTheory.Functor.CorepresentableBy.ofIso {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {F F' : CategoryTheory.Functor C (Type v)} {X : C} (e : F.CorepresentableBy X) (e' : F F') :
F'.CorepresentableBy X

If F ≅ F', and F is corepresentable, then F' is corepresentable.

Equations
  • e.ofIso e' = { homEquiv := fun {X_1 : C} => e.homEquiv.trans (e'.app X_1).toEquiv, homEquiv_comp := }
theorem CategoryTheory.Functor.RepresentableBy.homEquiv_eq {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {F : CategoryTheory.Functor Cᵒᵖ (Type v)} {Y : C} (e : F.RepresentableBy Y) {X : C} (f : X Y) :
e.homEquiv f = F.map f.op (e.homEquiv (CategoryTheory.CategoryStruct.id Y))
theorem CategoryTheory.Functor.CorepresentableBy.homEquiv_eq {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {F : CategoryTheory.Functor C (Type v)} {X : C} (e : F.CorepresentableBy X) {Y : C} (f : X Y) :
e.homEquiv f = F.map f (e.homEquiv (CategoryTheory.CategoryStruct.id X))
theorem CategoryTheory.Functor.CorepresentableBy.ext {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {F : CategoryTheory.Functor C (Type v)} {X : C} {e e' : F.CorepresentableBy X} (h : e.homEquiv (CategoryTheory.CategoryStruct.id X) = e'.homEquiv (CategoryTheory.CategoryStruct.id X)) :
e = e'

The obvious bijection F.RepresentableBy Y ≃ (yoneda.obj Y ≅ F) when F : Cᵒᵖ ⥤ Type v₁ and [Category.{v₁} C].

Equations
  • One or more equations did not get rendered due to their size.

The isomorphism yoneda.obj Y ≅ F induced by e : F.RepresentableBy Y.

Equations
  • e.toIso = CategoryTheory.Functor.representableByEquiv e

The obvious bijection F.CorepresentableBy X ≃ (yoneda.obj Y ≅ F) when F : C ⥤ Type v₁ and [Category.{v₁} C].

Equations
  • One or more equations did not get rendered due to their size.

The isomorphism coyoneda.obj (op X) ≅ F induced by e : F.CorepresentableBy X.

Equations
  • e.toIso = CategoryTheory.Functor.corepresentableByEquiv e

A functor F : Cᵒᵖ ⥤ Type v is representable if there is an object Y with a structure F.RepresentableBy Y, i.e. there is a natural bijection (X ⟶ Y) ≃ F.obj (op X), which may also be rephrased as a natural isomorphism yoneda.obj X ≅ F when Category.{v} C.

Stacks Tag 001Q

  • has_representation : ∃ (Y : C), Nonempty (F.RepresentableBy Y)
Instances
    @[deprecated CategoryTheory.Functor.IsRepresentable (since := "2024-10-03")]

    Alias of CategoryTheory.Functor.IsRepresentable.


    A functor F : Cᵒᵖ ⥤ Type v is representable if there is an object Y with a structure F.RepresentableBy Y, i.e. there is a natural bijection (X ⟶ Y) ≃ F.obj (op X), which may also be rephrased as a natural isomorphism yoneda.obj X ≅ F when Category.{v} C.

    Stacks Tag 001Q

    Equations
    theorem CategoryTheory.Functor.RepresentableBy.isRepresentable {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {F : CategoryTheory.Functor Cᵒᵖ (Type v)} {Y : C} (e : F.RepresentableBy Y) :
    F.IsRepresentable

    Alternative constructor for F.IsRepresentable, which takes as an input an isomorphism yoneda.obj X ≅ F.

    A functor F : C ⥤ Type v₁ is corepresentable if there is object X so F ≅ coyoneda.obj X.

    Stacks Tag 001Q

    • has_corepresentation : ∃ (X : C), Nonempty (F.CorepresentableBy X)
    Instances
      @[deprecated CategoryTheory.Functor.IsCorepresentable (since := "2024-10-03")]

      Alias of CategoryTheory.Functor.IsCorepresentable.


      A functor F : C ⥤ Type v₁ is corepresentable if there is object X so F ≅ coyoneda.obj X.

      Stacks Tag 001Q

      Equations
      theorem CategoryTheory.Functor.CorepresentableBy.isCorepresentable {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {F : CategoryTheory.Functor C (Type v)} {X : C} (e : F.CorepresentableBy X) :
      F.IsCorepresentable

      Alternative constructor for F.IsCorepresentable, which takes as an input an isomorphism coyoneda.obj (op X) ≅ F.

      noncomputable def CategoryTheory.Functor.reprX {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (F : CategoryTheory.Functor Cᵒᵖ (Type v)) [hF : F.IsRepresentable] :
      C

      The representing object for the representable functor F.

      Equations
      • F.reprX = .choose
      noncomputable def CategoryTheory.Functor.representableBy {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (F : CategoryTheory.Functor Cᵒᵖ (Type v)) [hF : F.IsRepresentable] :
      F.RepresentableBy F.reprX

      A chosen term in F.RepresentableBy (reprX F) when F.IsRepresentable holds.

      Equations
      • F.representableBy = .some
      noncomputable def CategoryTheory.Functor.reprx {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (F : CategoryTheory.Functor Cᵒᵖ (Type v)) [hF : F.IsRepresentable] :
      F.obj (Opposite.op F.reprX)

      The representing element for the representable functor F, sometimes called the universal element of the functor.

      Equations
      noncomputable def CategoryTheory.Functor.reprW {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (F : CategoryTheory.Functor Cᵒᵖ (Type v₁)) [F.IsRepresentable] :

      An isomorphism between a representable F and a functor of the form C(-, F.reprX). Note the components F.reprW.app X definitionally have type (X.unop ⟶ F.reprX) ≅ F.obj X.

      Equations
      • F.reprW = F.representableBy.toIso
      theorem CategoryTheory.Functor.reprW_hom_app {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (F : CategoryTheory.Functor Cᵒᵖ (Type v₁)) [F.IsRepresentable] (X : Cᵒᵖ) (f : Opposite.unop X F.reprX) :
      F.reprW.hom.app X f = F.map f.op F.reprx
      noncomputable def CategoryTheory.Functor.coreprX {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (F : CategoryTheory.Functor C (Type v)) [hF : F.IsCorepresentable] :
      C

      The representing object for the corepresentable functor F.

      Equations
      • F.coreprX = .choose
      noncomputable def CategoryTheory.Functor.corepresentableBy {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (F : CategoryTheory.Functor C (Type v)) [hF : F.IsCorepresentable] :
      F.CorepresentableBy F.coreprX

      A chosen term in F.CorepresentableBy (coreprX F) when F.IsCorepresentable holds.

      Equations
      • F.corepresentableBy = .some
      noncomputable def CategoryTheory.Functor.coreprx {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (F : CategoryTheory.Functor C (Type v)) [hF : F.IsCorepresentable] :
      F.obj F.coreprX

      The representing element for the corepresentable functor F, sometimes called the universal element of the functor.

      Equations
      noncomputable def CategoryTheory.Functor.coreprW {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (F : CategoryTheory.Functor C (Type v₁)) [F.IsCorepresentable] :

      An isomorphism between a corepresentable F and a functor of the form C(F.corepr X, -). Note the components F.coreprW.app X definitionally have type F.corepr_X ⟶ X ≅ F.obj X.

      Equations
      • F.coreprW = F.corepresentableBy.toIso
      theorem CategoryTheory.Functor.coreprW_hom_app {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (F : CategoryTheory.Functor C (Type v₁)) [F.IsCorepresentable] (X : C) (f : F.coreprX X) :
      F.coreprW.hom.app X f = F.map f F.coreprx
      theorem CategoryTheory.isRepresentable_of_natIso {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (F : CategoryTheory.Functor Cᵒᵖ (Type v₁)) {G : CategoryTheory.Functor Cᵒᵖ (Type v₁)} (i : F G) [F.IsRepresentable] :
      G.IsRepresentable
      theorem CategoryTheory.corepresentable_of_natIso {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (F : CategoryTheory.Functor C (Type v₁)) {G : CategoryTheory.Functor C (Type v₁)} (i : F G) [F.IsCorepresentable] :
      G.IsCorepresentable

      We have a type-level equivalence between natural transformations from the yoneda embedding and elements of F.obj X, without any universe switching.

      Equations
      • One or more equations did not get rendered due to their size.
      @[simp]
      theorem CategoryTheory.yonedaEquiv_symm_app_apply {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {F : CategoryTheory.Functor Cᵒᵖ (Type v₁)} (x : F.obj (Opposite.op X)) (Y : Cᵒᵖ) (f : Opposite.unop Y X) :
      (CategoryTheory.yonedaEquiv.symm x).app Y f = F.map f.op x
      theorem CategoryTheory.yonedaEquiv_naturality {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X Y : C} {F : CategoryTheory.Functor Cᵒᵖ (Type v₁)} (f : CategoryTheory.yoneda.obj X F) (g : Y X) :
      F.map g.op (CategoryTheory.yonedaEquiv f) = CategoryTheory.yonedaEquiv (CategoryTheory.CategoryStruct.comp (CategoryTheory.yoneda.map g) f)

      See also yonedaEquiv_naturality' for a more general version.

      theorem CategoryTheory.yonedaEquiv_naturality' {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X Y : Cᵒᵖ} {F : CategoryTheory.Functor Cᵒᵖ (Type v₁)} (f : CategoryTheory.yoneda.obj (Opposite.unop X) F) (g : X Y) :
      F.map g (CategoryTheory.yonedaEquiv f) = CategoryTheory.yonedaEquiv (CategoryTheory.CategoryStruct.comp (CategoryTheory.yoneda.map g.unop) f)

      Variant of yonedaEquiv_naturality with general g. This is technically strictly more general than yonedaEquiv_naturality, but yonedaEquiv_naturality is sometimes preferable because it can avoid the "motive is not type correct" error.

      theorem CategoryTheory.yonedaEquiv_comp {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {F G : CategoryTheory.Functor Cᵒᵖ (Type v₁)} (α : CategoryTheory.yoneda.obj X F) (β : F G) :
      CategoryTheory.yonedaEquiv (CategoryTheory.CategoryStruct.comp α β) = β.app (Opposite.op X) (CategoryTheory.yonedaEquiv α)
      theorem CategoryTheory.yonedaEquiv_yoneda_map {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X Y : C} (f : X Y) :
      CategoryTheory.yonedaEquiv (CategoryTheory.yoneda.map f) = f
      theorem CategoryTheory.map_yonedaEquiv {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X Y : C} {F : CategoryTheory.Functor Cᵒᵖ (Type v₁)} (f : CategoryTheory.yoneda.obj X F) (g : Y X) :
      F.map g.op (CategoryTheory.yonedaEquiv f) = f.app (Opposite.op Y) g

      See also map_yonedaEquiv' for a more general version.

      theorem CategoryTheory.map_yonedaEquiv' {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X Y : Cᵒᵖ} {F : CategoryTheory.Functor Cᵒᵖ (Type v₁)} (f : CategoryTheory.yoneda.obj (Opposite.unop X) F) (g : X Y) :
      F.map g (CategoryTheory.yonedaEquiv f) = f.app Y g.unop

      Variant of map_yonedaEquiv with general g. This is technically strictly more general than map_yonedaEquiv, but map_yonedaEquiv is sometimes preferable because it can avoid the "motive is not type correct" error.

      Two morphisms of presheaves of types P ⟶ Q coincide if the precompositions with morphisms yoneda.obj X ⟶ P agree.

      The "Yoneda evaluation" functor, which sends X : Cᵒᵖ and F : Cᵒᵖ ⥤ Type to F.obj X, functorially in both X and F.

      Equations
      @[simp]
      theorem CategoryTheory.yonedaEvaluation_map_down (C : Type u₁) [CategoryTheory.Category.{v₁, u₁} C] (P Q : Cᵒᵖ × CategoryTheory.Functor Cᵒᵖ (Type v₁)) (α : P Q) (x : (CategoryTheory.yonedaEvaluation C).obj P) :
      ((CategoryTheory.yonedaEvaluation C).map α x).down = α.2.app Q.1 (P.2.map α.1 x.down)

      The "Yoneda pairing" functor, which sends X : Cᵒᵖ and F : Cᵒᵖ ⥤ Type to yoneda.op.obj X ⟶ F, functorially in both X and F.

      Equations
      • One or more equations did not get rendered due to their size.
      theorem CategoryTheory.yonedaPairingExt (C : Type u₁) [CategoryTheory.Category.{v₁, u₁} C] {X : Cᵒᵖ × CategoryTheory.Functor Cᵒᵖ (Type v₁)} {x y : (CategoryTheory.yonedaPairing C).obj X} (w : ∀ (Y : Cᵒᵖ), x.app Y = y.app Y) :
      x = y

      A bijection (yoneda.obj X ⋙ uliftFunctor ⟶ F) ≃ F.obj (op X) which is a variant of yonedaEquiv with heterogeneous universes.

      Equations
      • One or more equations did not get rendered due to their size.

      The Yoneda lemma asserts that the Yoneda pairing (X : Cᵒᵖ, F : Cᵒᵖ ⥤ Type) ↦ (yoneda.obj (unop X) ⟶ F) is naturally isomorphic to the evaluation (X, F) ↦ F.obj X.

      Stacks Tag 001P

      Equations
      • One or more equations did not get rendered due to their size.

      The curried version of yoneda lemma when C is small.

      Equations
      • One or more equations did not get rendered due to their size.

      The curried version of the Yoneda lemma.

      Equations
      • One or more equations did not get rendered due to their size.

      Version of the Yoneda lemma where the presheaf is fixed but the argument varies.

      Equations
      • One or more equations did not get rendered due to their size.

      The curried version of yoneda lemma when C is small.

      Equations
      • One or more equations did not get rendered due to their size.

      We have a type-level equivalence between natural transformations from the coyoneda embedding and elements of F.obj X.unop, without any universe switching.

      Equations
      • One or more equations did not get rendered due to their size.
      @[simp]
      theorem CategoryTheory.coyonedaEquiv_symm_app_apply {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {F : CategoryTheory.Functor C (Type v₁)} (x : F.obj X) (Y : C) (f : X Y) :
      (CategoryTheory.coyonedaEquiv.symm x).app Y f = F.map f x
      theorem CategoryTheory.coyonedaEquiv_naturality {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X Y : C} {F : CategoryTheory.Functor C (Type v₁)} (f : CategoryTheory.coyoneda.obj (Opposite.op X) F) (g : X Y) :
      F.map g (CategoryTheory.coyonedaEquiv f) = CategoryTheory.coyonedaEquiv (CategoryTheory.CategoryStruct.comp (CategoryTheory.coyoneda.map g.op) f)
      theorem CategoryTheory.coyonedaEquiv_comp {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {F G : CategoryTheory.Functor C (Type v₁)} (α : CategoryTheory.coyoneda.obj (Opposite.op X) F) (β : F G) :
      CategoryTheory.coyonedaEquiv (CategoryTheory.CategoryStruct.comp α β) = β.app X (CategoryTheory.coyonedaEquiv α)
      theorem CategoryTheory.coyonedaEquiv_coyoneda_map {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X Y : C} (f : X Y) :
      CategoryTheory.coyonedaEquiv (CategoryTheory.coyoneda.map f.op) = f
      theorem CategoryTheory.map_coyonedaEquiv {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X Y : C} {F : CategoryTheory.Functor C (Type v₁)} (f : CategoryTheory.coyoneda.obj (Opposite.op X) F) (g : X Y) :
      F.map g (CategoryTheory.coyonedaEquiv f) = f.app Y g

      The "Coyoneda evaluation" functor, which sends X : C and F : C ⥤ Type to F.obj X, functorially in both X and F.

      Equations
      @[simp]
      theorem CategoryTheory.coyonedaEvaluation_map_down (C : Type u₁) [CategoryTheory.Category.{v₁, u₁} C] (P Q : C × CategoryTheory.Functor C (Type v₁)) (α : P Q) (x : (CategoryTheory.coyonedaEvaluation C).obj P) :
      ((CategoryTheory.coyonedaEvaluation C).map α x).down = α.2.app Q.1 (P.2.map α.1 x.down)

      The "Coyoneda pairing" functor, which sends X : C and F : C ⥤ Type to coyoneda.rightOp.obj X ⟶ F, functorially in both X and F.

      Equations
      • One or more equations did not get rendered due to their size.
      theorem CategoryTheory.coyonedaPairingExt (C : Type u₁) [CategoryTheory.Category.{v₁, u₁} C] {X : C × CategoryTheory.Functor C (Type v₁)} {x y : (CategoryTheory.coyonedaPairing C).obj X} (w : ∀ (Y : C), x.app Y = y.app Y) :
      x = y

      A bijection (coyoneda.obj X ⋙ uliftFunctor ⟶ F) ≃ F.obj (unop X) which is a variant of coyonedaEquiv with heterogeneous universes.

      Equations
      • One or more equations did not get rendered due to their size.

      The Coyoneda lemma asserts that the Coyoneda pairing (X : C, F : C ⥤ Type) ↦ (coyoneda.obj X ⟶ F) is naturally isomorphic to the evaluation (X, F) ↦ F.obj X.

      Stacks Tag 001P

      Equations

      The curried version of coyoneda lemma when C is small.

      Equations
      • One or more equations did not get rendered due to their size.

      The curried version of the Coyoneda lemma.

      Equations
      • One or more equations did not get rendered due to their size.

      Version of the Coyoneda lemma where the presheaf is fixed but the argument varies.

      Equations
      • One or more equations did not get rendered due to their size.

      The curried version of coyoneda lemma when C is small.

      Equations
      • One or more equations did not get rendered due to their size.

      The natural transformation yoneda.obj X ⟶ F.op ⋙ yoneda.obj (F.obj X) when F : C ⥤ D and X : C.

      Equations

      FullyFaithful.homEquiv as a natural isomorphism.

      Equations
      @[simp]
      theorem CategoryTheory.Functor.FullyFaithful.homNatIso_inv_app_down {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] {F : CategoryTheory.Functor C D} (hF : F.FullyFaithful) (X : C) (X✝ : Cᵒᵖ) (a✝ : ((CategoryTheory.yoneda.obj X).comp CategoryTheory.uliftFunctor.{v₂, v₁}).obj X✝) :
      ((hF.homNatIso X).inv.app X✝ a✝).down = F.map a✝.down
      @[simp]
      theorem CategoryTheory.Functor.FullyFaithful.homNatIso_hom_app_down {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] {F : CategoryTheory.Functor C D} (hF : F.FullyFaithful) (X : C) (X✝ : Cᵒᵖ) (a✝ : (F.op.comp ((CategoryTheory.yoneda.obj (F.obj X)).comp CategoryTheory.uliftFunctor.{v₁, v₂})).obj X✝) :
      ((hF.homNatIso X).hom.app X✝ a✝).down = hF.preimage a✝.down

      FullyFaithful.homEquiv as a natural isomorphism.

      Equations
      @[simp]
      theorem CategoryTheory.Functor.FullyFaithful.homNatIsoMaxRight_hom_app_down {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{max v₁ v₂, u₂} D] {F : CategoryTheory.Functor C D} (hF : F.FullyFaithful) (X : C) (X✝ : Cᵒᵖ) (a✝ : (F.op.comp (CategoryTheory.yoneda.obj (F.obj X))).obj X✝) :
      ((hF.homNatIsoMaxRight X).hom.app X✝ a✝).down = hF.preimage a✝
      @[simp]
      theorem CategoryTheory.Functor.FullyFaithful.homNatIsoMaxRight_inv_app {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{max v₁ v₂, u₂} D] {F : CategoryTheory.Functor C D} (hF : F.FullyFaithful) (X : C) (X✝ : Cᵒᵖ) (a✝ : ((CategoryTheory.yoneda.obj X).comp CategoryTheory.uliftFunctor.{v₂, v₁}).obj X✝) :
      (hF.homNatIsoMaxRight X).inv.app X✝ a✝ = F.map a✝.down
      @[simp]
      theorem CategoryTheory.Functor.FullyFaithful.compYonedaCompWhiskeringLeft_inv_app_app_down {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] {F : CategoryTheory.Functor C D} (hF : F.FullyFaithful) (X : C) (X✝ : Cᵒᵖ) (a✝ : ((CategoryTheory.yoneda.obj X).comp CategoryTheory.uliftFunctor.{v₂, v₁}).obj X✝) :
      ((hF.compYonedaCompWhiskeringLeft.inv.app X).app X✝ a✝).down = F.map a✝.down
      @[simp]
      theorem CategoryTheory.Functor.FullyFaithful.compYonedaCompWhiskeringLeft_hom_app_app_down {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] {F : CategoryTheory.Functor C D} (hF : F.FullyFaithful) (X : C) (X✝ : Cᵒᵖ) (a✝ : (F.op.comp ((CategoryTheory.yoneda.obj (F.obj X)).comp CategoryTheory.uliftFunctor.{v₁, v₂})).obj X✝) :
      ((hF.compYonedaCompWhiskeringLeft.hom.app X).app X✝ a✝).down = hF.preimage a✝.down

      FullyFaithful.homEquiv as a natural isomorphism.

      Equations
      @[simp]
      theorem CategoryTheory.Functor.FullyFaithful.compYonedaCompWhiskeringLeftMaxRight_hom_app_app_down {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{max v₁ v₂, u₂} D] {F : CategoryTheory.Functor C D} (hF : F.FullyFaithful) (X : C) (X✝ : Cᵒᵖ) (a✝ : (F.op.comp (CategoryTheory.yoneda.obj (F.obj X))).obj X✝) :
      ((hF.compYonedaCompWhiskeringLeftMaxRight.hom.app X).app X✝ a✝).down = hF.preimage a✝
      @[simp]
      theorem CategoryTheory.Functor.FullyFaithful.compYonedaCompWhiskeringLeftMaxRight_inv_app_app {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{max v₁ v₂, u₂} D] {F : CategoryTheory.Functor C D} (hF : F.FullyFaithful) (X : C) (X✝ : Cᵒᵖ) (a✝ : ((CategoryTheory.yoneda.obj X).comp CategoryTheory.uliftFunctor.{v₂, v₁}).obj X✝) :
      (hF.compYonedaCompWhiskeringLeftMaxRight.inv.app X).app X✝ a✝ = F.map a✝.down