Non-zero divisors in a ring #
theorem
mul_cancel_right_coe_nonZeroDivisors
{R : Type u_1}
[Ring R]
{x y : R}
{c : ↥(nonZeroDivisors R)}
:
theorem
isUnit_iff_mem_nonZeroDivisors_of_finite
{R : Type u_1}
[Ring R]
{a : R}
[Finite R]
:
IsUnit a ↔ a ∈ nonZeroDivisors R
In a finite ring, an element is a unit iff it is a non-zero-divisor.
theorem
mul_cancel_left_coe_nonZeroDivisors
{R : Type u_1}
[CommRing R]
{x y : R}
{c : ↥(nonZeroDivisors R)}
:
theorem
dvd_cancel_right_coe_nonZeroDivisors
{R : Type u_1}
[CommRing R]
{x y : R}
{c : ↥(nonZeroDivisors R)}
:
theorem
dvd_cancel_left_coe_nonZeroDivisors
{R : Type u_1}
[CommRing R]
{x y : R}
{c : ↥(nonZeroDivisors R)}
: