Kleene Algebras #
This file defines idempotent semirings and Kleene algebras, which are used extensively in the theory of computation.
An idempotent semiring is a semiring whose addition is idempotent. An idempotent semiring is
naturally a semilattice by setting a ≤ b if a + b = b.
A Kleene algebra is an idempotent semiring equipped with an additional unary operator ∗, the
Kleene star.
Main declarations #
IdemSemiring: Idempotent semiringIdemCommSemiring: Idempotent commutative semiringKleeneAlgebra: Kleene algebra
Notation #
a∗ is notation for kstar a in locale Computability.
References #
- [D. Kozen, A completeness theorem for Kleene algebras and the algebra of regular events] [kozen1994]
- https://planetmath.org/idempotentsemiring
- https://encyclopediaofmath.org/wiki/Idempotent_semi-ring
- https://planetmath.org/kleene_algebra
TODO #
Instances for AddOpposite, MulOpposite, ULift, Subsemiring, Subring, Subalgebra.
Tags #
kleene algebra, idempotent semiring
An idempotent commutative semiring is a commutative semiring with the additional property that addition is idempotent.
Instances
The Kleene star operator on a Kleene algebra
Equations
- Computability.«term_∗» = Lean.ParserDescr.trailingNode `Computability.«term_∗» 1024 1024 (Lean.ParserDescr.symbol "∗")
Instances For
A Kleene Algebra is an idempotent semiring with an additional unary operator kstar (for Kleene
star) that satisfies the following properties:
1 + a * a∗ ≤ a∗1 + a∗ * a ≤ a∗- If
a * c + b ≤ c, thena∗ * b ≤ c - If
c * a + b ≤ c, thenb * a∗ ≤ c
- add : α → α → α
- zero : α
- mul : α → α → α
- one : α
- sup : α → α → α
- bot : α
- kstar : α → α
- mul_kstar_le_self (a b : α) : b * a ≤ b → b * KStar.kstar a ≤ b
- kstar_mul_le_self (a b : α) : a * b ≤ b → KStar.kstar a * b ≤ b
Instances
Equations
Construct an idempotent semiring from an idempotent addition.
Equations
- IdemSemiring.ofSemiring h = IdemSemiring.mk ⋯ 0 ⋯
Instances For
Alias of the reverse direction of add_eq_left_iff_le.
Alias of the reverse direction of add_eq_right_iff_le.
Equations
Equations
Equations
- Prod.instKleeneAlgebra = KleeneAlgebra.mk ⋯ ⋯ ⋯ ⋯ ⋯
Equations
Equations
- Pi.instKleeneAlgebraForall = KleeneAlgebra.mk ⋯ ⋯ ⋯ ⋯ ⋯
Pullback an IdemSemiring instance along an injective function.
Equations
- Function.Injective.idemSemiring f hf zero one add mul nsmul npow natCast sup bot = IdemSemiring.mk ⋯ ⊥ ⋯
Instances For
Pullback an IdemCommSemiring instance along an injective function.
Equations
- Function.Injective.idemCommSemiring f hf zero one add mul nsmul npow natCast sup bot = IdemCommSemiring.mk ⋯ IdemSemiring.bot ⋯
Instances For
Pullback a KleeneAlgebra instance along an injective function.
Equations
- Function.Injective.kleeneAlgebra f hf zero one add mul nsmul npow natCast sup bot kstar = KleeneAlgebra.mk ⋯ ⋯ ⋯ ⋯ ⋯