Extensionality of monoid homs from ℕ
#
Additive homomorphisms from ℕ
are defined by the image of 1
.
Equations
Instances For
@[simp]
theorem
multiplesHom_apply
{M : Type u_2}
[AddMonoid M]
(x : M)
(n : ℕ)
:
((multiplesHom M) x) n = n • x
@[simp]
theorem
multiplesHom_symm_apply
{M : Type u_2}
[AddMonoid M]
(f : ℕ →+ M)
:
(multiplesHom M).symm f = f 1
Monoid homomorphisms from Multiplicative ℕ
are defined by the image
of Multiplicative.ofAdd 1
.
Equations
- powersHom M = Additive.ofMul.trans ((multiplesHom (Additive M)).trans AddMonoidHom.toMultiplicative'')
Instances For
@[simp]
@[simp]
theorem
MonoidHom.apply_mnat
{M : Type u_2}
[Monoid M]
(f : Multiplicative ℕ →* M)
(n : Multiplicative ℕ)
:
theorem
MonoidHom.ext_mnat
{M : Type u_2}
[Monoid M]
⦃f g : Multiplicative ℕ →* M⦄
(h : f (Multiplicative.ofAdd 1) = g (Multiplicative.ofAdd 1))
:
f = g
If M
is commutative, multiplesHom
is an additive equivalence.
Equations
- multiplesAddHom M = { toEquiv := multiplesHom M, map_add' := ⋯ }
Instances For
@[simp]
theorem
multiplesAddHom_apply
{M : Type u_2}
[AddCommMonoid M]
(x : M)
(n : ℕ)
:
((multiplesAddHom M) x) n = n • x
@[simp]
theorem
multiplesAddHom_symm_apply
{M : Type u_2}
[AddCommMonoid M]
(f : ℕ →+ M)
:
(multiplesAddHom M).symm f = f 1
If M
is commutative, powersHom
is a multiplicative equivalence.
Equations
- powersMulHom M = { toEquiv := powersHom M, map_mul' := ⋯ }
Instances For
@[simp]
theorem
powersMulHom_apply
{M : Type u_2}
[CommMonoid M]
(x : M)
(n : Multiplicative ℕ)
:
((powersMulHom M) x) n = x ^ Multiplicative.toAdd n
@[simp]
theorem
powersMulHom_symm_apply
{M : Type u_2}
[CommMonoid M]
(f : Multiplicative ℕ →* M)
:
(powersMulHom M).symm f = f (Multiplicative.ofAdd 1)