Documentation

Mathlib.Algebra.Group.Aut

Multiplicative and additive group automorphisms #

This file defines the automorphism group structure on AddAut R := AddEquiv R R and MulAut R := MulEquiv R R.

Implementation notes #

The definition of multiplication in the automorphism groups agrees with function composition, multiplication in Equiv.Perm, and multiplication in CategoryTheory.End, but not with CategoryTheory.comp.

This file is kept separate from Mathlib/Algebra/Group/Equiv/* so that Mathlib.GroupTheory.Perm is free to use equivalences (and other files that use them) before the group structure is defined.

Tags #

MulAut, AddAut

@[reducible]
def MulAut (M : Type u_4) [Mul M] :
Type u_4

The group of multiplicative automorphisms.

Equations
@[reducible]
def AddAut (M : Type u_4) [Add M] :
Type u_4

The group of additive automorphisms.

Equations
instance MulAut.instGroup (M : Type u_2) [Mul M] :

The group operation on multiplicative automorphisms is defined by g h => MulEquiv.trans h g. This means that multiplication agrees with composition, (g*h)(x) = g (h x).

Equations
instance MulAut.instInhabited (M : Type u_2) [Mul M] :
Equations
@[simp]
theorem MulAut.coe_mul (M : Type u_2) [Mul M] (e₁ e₂ : MulAut M) :
(e₁ * e₂) = e₁ e₂
@[simp]
theorem MulAut.coe_one (M : Type u_2) [Mul M] :
1 = id
theorem MulAut.mul_def (M : Type u_2) [Mul M] (e₁ e₂ : MulAut M) :
e₁ * e₂ = MulEquiv.trans e₂ e₁
theorem MulAut.one_def (M : Type u_2) [Mul M] :
theorem MulAut.inv_def (M : Type u_2) [Mul M] (e₁ : MulAut M) :
@[simp]
theorem MulAut.mul_apply (M : Type u_2) [Mul M] (e₁ e₂ : MulAut M) (m : M) :
(e₁ * e₂) m = e₁ (e₂ m)
@[simp]
theorem MulAut.one_apply (M : Type u_2) [Mul M] (m : M) :
1 m = m
@[simp]
theorem MulAut.apply_inv_self (M : Type u_2) [Mul M] (e : MulAut M) (m : M) :
e (e⁻¹ m) = m
@[simp]
theorem MulAut.inv_apply_self (M : Type u_2) [Mul M] (e : MulAut M) (m : M) :
e⁻¹ (e m) = m
def MulAut.toPerm (M : Type u_2) [Mul M] :

Monoid hom from the group of multiplicative automorphisms to the group of permutations.

Equations
instance MulAut.applyMulAction {M : Type u_4} [Monoid M] :

The tautological action by MulAut M on M.

This generalizes Function.End.applyMulAction.

Equations
@[simp]
theorem MulAut.smul_def {M : Type u_4} [Monoid M] (f : MulAut M) (a : M) :
f a = f a

MulAut.applyDistribMulAction is faithful.

def MulAut.conj {G : Type u_3} [Group G] :

Group conjugation, MulAut.conj g h = g * h * g⁻¹, as a monoid homomorphism mapping multiplication in G into multiplication in the automorphism group MulAut G. See also the type ConjAct G for any group G, which has a MulAction (ConjAct G) G instance where conj G acts on G by conjugation.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem MulAut.conj_apply {G : Type u_3} [Group G] (g h : G) :
(MulAut.conj g) h = g * h * g⁻¹
@[simp]
theorem MulAut.conj_symm_apply {G : Type u_3} [Group G] (g h : G) :
(MulEquiv.symm (MulAut.conj g)) h = g⁻¹ * h * g
@[simp]
theorem MulAut.conj_inv_apply {G : Type u_3} [Group G] (g h : G) :
(MulAut.conj g)⁻¹ h = g⁻¹ * h * g
def MulAut.congr {G : Type u_3} [Group G] {H : Type u_4} [Group H] (ϕ : G ≃* H) :

Isomorphic groups have isomorphic automorphism groups.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem MulAut.congr_apply {G : Type u_3} [Group G] {H : Type u_4} [Group H] (ϕ : G ≃* H) (f : MulAut G) :
(MulAut.congr ϕ) f = ϕ.symm.trans (MulEquiv.trans f ϕ)
@[simp]
theorem MulAut.congr_symm_apply {G : Type u_3} [Group G] {H : Type u_4} [Group H] (ϕ : G ≃* H) (f : MulAut H) :
(MulAut.congr ϕ).symm f = ϕ.trans (MulEquiv.trans f ϕ.symm)
instance AddAut.group (A : Type u_1) [Add A] :

The group operation on additive automorphisms is defined by g h => AddEquiv.trans h g. This means that multiplication agrees with composition, (g*h)(x) = g (h x).

Equations
instance AddAut.instInhabited (A : Type u_1) [Add A] :
Equations
@[simp]
theorem AddAut.coe_mul (A : Type u_1) [Add A] (e₁ e₂ : AddAut A) :
(e₁ * e₂) = e₁ e₂
@[simp]
theorem AddAut.coe_one (A : Type u_1) [Add A] :
1 = id
theorem AddAut.mul_def (A : Type u_1) [Add A] (e₁ e₂ : AddAut A) :
e₁ * e₂ = AddEquiv.trans e₂ e₁
theorem AddAut.one_def (A : Type u_1) [Add A] :
theorem AddAut.inv_def (A : Type u_1) [Add A] (e₁ : AddAut A) :
@[simp]
theorem AddAut.mul_apply (A : Type u_1) [Add A] (e₁ e₂ : AddAut A) (a : A) :
(e₁ * e₂) a = e₁ (e₂ a)
@[simp]
theorem AddAut.one_apply (A : Type u_1) [Add A] (a : A) :
1 a = a
@[simp]
theorem AddAut.apply_inv_self (A : Type u_1) [Add A] (e : AddAut A) (a : A) :
e⁻¹ (e a) = a
@[simp]
theorem AddAut.inv_apply_self (A : Type u_1) [Add A] (e : AddAut A) (a : A) :
e (e⁻¹ a) = a
def AddAut.toPerm (A : Type u_1) [Add A] :

Monoid hom from the group of multiplicative automorphisms to the group of permutations.

Equations
instance AddAut.applyMulAction {A : Type u_4} [AddMonoid A] :

The tautological action by AddAut A on A.

This generalizes Function.End.applyMulAction.

Equations
@[simp]
theorem AddAut.smul_def {A : Type u_4} [AddMonoid A] (f : AddAut A) (a : A) :
f a = f a

AddAut.applyDistribMulAction is faithful.

def AddAut.conj {G : Type u_3} [AddGroup G] :

Additive group conjugation, AddAut.conj g h = g + h - g, as an additive monoid homomorphism mapping addition in G into multiplication in the automorphism group AddAut G (written additively in order to define the map).

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem AddAut.conj_apply {G : Type u_3} [AddGroup G] (g h : G) :
(Additive.toMul (AddAut.conj g)) h = g + h + -g
@[simp]
theorem AddAut.conj_symm_apply {G : Type u_3} [AddGroup G] (g h : G) :
(AddEquiv.symm (AddAut.conj g)) h = -g + h + g
@[simp]
theorem AddAut.conj_inv_apply {G : Type u_3} [AddGroup G] (g h : G) :
(Additive.toMul (AddAut.conj g))⁻¹ h = -g + h + g
def AddAut.congr {G : Type u_3} [AddGroup G] {H : Type u_4} [AddGroup H] (ϕ : G ≃+ H) :

Isomorphic additive groups have isomorphic automorphism groups.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem AddAut.congr_apply {G : Type u_3} [AddGroup G] {H : Type u_4} [AddGroup H] (ϕ : G ≃+ H) (f : AddAut G) :
(AddAut.congr ϕ) f = ϕ.symm.trans (AddEquiv.trans f ϕ)
@[simp]
theorem AddAut.congr_symm_apply {G : Type u_3} [AddGroup G] {H : Type u_4} [AddGroup H] (ϕ : G ≃+ H) (f : AddAut H) :
(AddAut.congr ϕ).symm f = ϕ.trans (AddEquiv.trans f ϕ.symm)

Multiplicative G and G have isomorphic automorphism groups.

Equations
@[simp]
theorem MulAutMultiplicative_symm_apply_symm_apply (G : Type u_3) [AddGroup G] (a✝ : G ≃+ G) (a : Multiplicative G) :
(MulEquiv.symm ((MulAutMultiplicative G).symm a✝)) a = Multiplicative.ofAdd (a✝.symm (Multiplicative.toAdd a))
@[simp]
theorem MulAutMultiplicative_apply_symm_apply (G : Type u_3) [AddGroup G] (a✝ : Multiplicative G ≃* Multiplicative G) (a : G) :
(AddEquiv.symm ((MulAutMultiplicative G) a✝)) a = Multiplicative.toAdd (a✝.symm (Multiplicative.ofAdd a))
@[simp]
theorem MulAutMultiplicative_apply_apply (G : Type u_3) [AddGroup G] (a✝ : Multiplicative G ≃* Multiplicative G) (a : G) :
((MulAutMultiplicative G) a✝) a = Multiplicative.toAdd (a✝ (Multiplicative.ofAdd a))
@[simp]
theorem MulAutMultiplicative_symm_apply_apply (G : Type u_3) [AddGroup G] (a✝ : G ≃+ G) (a : Multiplicative G) :
((MulAutMultiplicative G).symm a✝) a = Multiplicative.ofAdd (a✝ (Multiplicative.toAdd a))

Additive G and G have isomorphic automorphism groups.

Equations
@[simp]
theorem AddAutAdditive_apply_symm_apply (G : Type u_3) [Group G] (a✝ : Additive G ≃+ Additive G) (a : G) :
(MulEquiv.symm ((AddAutAdditive G) a✝)) a = Additive.toMul (a✝.symm (Additive.ofMul a))
@[simp]
theorem AddAutAdditive_symm_apply_apply (G : Type u_3) [Group G] (a✝ : G ≃* G) (a : Additive G) :
((AddAutAdditive G).symm a✝) a = Additive.ofMul (a✝ (Additive.toMul a))
@[simp]
theorem AddAutAdditive_symm_apply_symm_apply (G : Type u_3) [Group G] (a✝ : G ≃* G) (a : Additive G) :
(AddEquiv.symm ((AddAutAdditive G).symm a✝)) a = Additive.ofMul (a✝.symm (Additive.toMul a))
@[simp]
theorem AddAutAdditive_apply_apply (G : Type u_3) [Group G] (a✝ : Additive G ≃+ Additive G) (a : G) :
((AddAutAdditive G) a✝) a = Additive.toMul (a✝ (Additive.ofMul a))