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Chapter 1

Code

1.1 TU Matrices
Definition 1 (TU matrix). A rational matrix is totally unimodular (TU) if its every subdeter-
minant (i.e., determinant of every square submatrix) is 0 or ±1.

Lemma 2 (entries of a TU matrix). If 𝐴 is TU, then every entry of 𝐴 is 0 or ±1.

Proof sketch. Every entry is a square submatrix of size 1, and therefore has determinant (and
value) 0 or ±1.

Lemma 3 (any submatrix of a TU matrix is TU). Let 𝐴 be a rational matrix that is TU and
let 𝐵 be a submatrix of 𝐴. Then 𝐵 is TU.

Proof sketch. Any square submatrix of 𝐵 is a submatrix of 𝐴, so its determinant is 0 or ±1.
Thus, 𝐵 is TU.

Lemma 4 (transpose of TU is TU). Let 𝐴 be a TU matrix. Then 𝐴𝑇 is TU.

Proof sketch. A submatrix 𝑇 of 𝐴𝑇 is a transpose of a submatrix of 𝐴, so det 𝑇 ∈ {0, ±1}.

Lemma 5 (appending zero vector to TU). Let 𝐴 be a matrix. Let 𝑎 be a zero row. Then
𝐶 = [𝐴/𝑎] is TU exactly when 𝐴 is.

Proof sketch. Let 𝑇 be a square submatrix of 𝐶, and suppose 𝐴 is TU. If 𝑇 contains a zero row,
then det 𝑇 = 0. Otherwise 𝑇 is a submatrix of 𝐴, so det 𝑇 ∈ {0, ±1}. For the other direction,
because 𝐴 is a submatrix of 𝐶, we can apply lemma 3.

Lemma 6 (appending unit vector to TU). Let 𝐴 be a matrix. Let 𝑎 be a unit row. Then
𝐶 = [𝐴/𝑎] is TU exactly when 𝐴 is.

Proof sketch. Let 𝑇 be a square submatrix of 𝐶, and suppose 𝐴 is TU. If 𝑇 contains the ±1
entry of the unit row, then det 𝑇 equals the determinant of some submatrix of 𝐴 times ±1, so
det 𝑇 ∈ {0, ±1}. If 𝑇 contains some entries of the unit row except the ±1, then det 𝑇 = 0.
Otherwise 𝑇 is a submatrix of 𝐴, so det 𝑇 ∈ {0, ±1}. For the other direction, simply note that
𝐴 is a submatrix of 𝐶, and use lemma 3.

Lemma 7 (TUness with adjoint identity matrix). 𝐴 is TU iff every basis matrix of [𝐼 ∣ 𝐴] has
determinant ±1.
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Proof sketch. Gaussian elimination. Basis submatrix: its columns form a basis of all columns,
its rows form a basis of all rows.

Lemma 8 (block-diagonal matrix with TU blocks is TU). Let 𝐴 be a matrix of the form
𝐴1 0
0 𝐴2

where 𝐴1 and 𝐴2 are both TU. Then 𝐴 is also TU.

Proof sketch. Any square submatrix 𝑇 of 𝐴 has the form 𝑇1 0
0 𝑇2

where 𝑇1 and 𝑇2 are sub-
matrices of 𝐴1 and 𝐴2, respectively.

• If 𝑇1 is square, then 𝑇2 is also square, and det 𝑇 = det 𝑇1 ⋅ det 𝑇2 ∈ {0, ±1}.

• If 𝑇1 has more rows than columns, then the rows of 𝑇 containing 𝑇1 are linearly dependent,
so det 𝑇 = 0.

• Similar if 𝑇1 has more columns than rows.

Lemma 9 (appending parallel element to TU). Let 𝐴 be a TU matrix. Let 𝑎 be some row of 𝐴.
Then 𝐶 = [𝐴/𝑎] is TU.

Proof sketch. Let 𝑇 be a square submatrix of 𝐶. If 𝑇 contains the same row twice, then the
rows are ℤ2-dependent, so det 𝑇 = 0. Otherwise 𝑇 is a submatrix of 𝐴, so det 𝑇 ∈ {0, ±1}.

Lemma 10 (appending rows to TU). Let 𝐴 be a TU matrix. Let 𝐵 be a matrix whose every
row is a row of 𝐴, a zero row, or a unit row. Then 𝐶 = [𝐴/𝐵] is TU.

Proof sketch. Either repeatedly apply Lemmas 5, 6, and 9 or perform a similar case analysis
directly.

Corollary 11 (appending columns to TU). Let 𝐴 be a TU matrix. Let 𝐵 be a matrix whose
every column is a column of 𝐴, a zero column, or a unit column. Then 𝐶 = [𝐴 ∣ 𝐵] is TU.

Proof sketch. 𝐶𝑇 is TU by Lemma 10 and construction, so 𝐶 is TU by Lemma 4.

Definition 12 (ℱ-pivot). Let 𝐴 be a matrix over a field ℱ with row index set 𝑋 and column
index set 𝑌 . Let 𝐴𝑥𝑦 be a nonzero element. The result of a ℱ-pivot of 𝐴 on the pivot element
𝐴𝑥𝑦 is the matrix 𝐴′ over ℱ with row index set 𝑋′ and column index set 𝑌 ′ defined as follows.

• For every 𝑢 ∈ 𝑋 − 𝑥 and 𝑤 ∈ 𝑌 − 𝑦, let 𝐴′
𝑢𝑤 = 𝐴𝑢𝑤 + (𝐴𝑢𝑦 ⋅ 𝐴𝑥𝑤)/(−𝐴𝑥𝑦).

• Let 𝐴′
𝑥𝑦 = −𝐴𝑥𝑦, 𝑋′ = 𝑋 − 𝑥 + 𝑦, and 𝑌 ′ = 𝑌 − 𝑦 + 𝑥.

Lemma 13 (pivoting preserves TUness). Let 𝐴 be a TU matrix and let 𝐴𝑥𝑦 be a nonzero element.
Let 𝐴′ be the matrix obtained by performing a real pivot in 𝐴 on 𝐴𝑥𝑦. Then 𝐴′ is TU.

Proof sketch.

• By Lemma 7 𝐴 is TU iff every basis matrix of [𝐼 ∣ 𝐴] has determinant ±1. The same holds
for 𝐴′ and [𝐼 ∣ 𝐴′].

• Determinants of the basis matrices are preserved under elementary row operations in [𝐼 ∣ 𝐴]
corresponding to the pivot in 𝐴, under scaling by ±1 factors, and under column exchange,
all of which together convert [𝐼 ∣ 𝐴] to [𝐼 ∣ 𝐴′].
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Lemma 14 (pivoting preserves TUness). Let 𝐴 be a matrix and let 𝐴𝑥𝑦 be a nonzero element.
Let 𝐴′ be the matrix obtained by performing a real pivot in 𝐴 on 𝐴𝑥𝑦. If 𝐴′ is TU, then 𝐴 is
TU.

Proof sketch. Reverse the row operations, scaling, and column exchange in the proof of Lemma 13.

1.1.1 Minimal Violation Matrices
Definition 15 (minimal violation matrix). Let 𝐴 be a rational {0, ±1} matrix that is not TU
but all of whose proper submatrices are TU. Then 𝐴 is called a minimal violation matrix of total
unimodularity (minimal violation matrix).

Lemma 16 (simple properties of MVMs). Let 𝐴 be a minimal violation matrix.

• 𝐴 is square.

• det 𝐴 ∉ {0, ±1}.

• If 𝐴 is 2 × 2, then 𝐴 does not contain a 0.

Proof sketch.

• If 𝐴 is not square, then since all its proper submatrices are TU, 𝐴 is TU, contradiction.

• If det 𝐴 ∈ {0, ±1}, then all subdeterminants of 𝐴 are 0 or ±1, so 𝐴 is TU, contradiction.

• If 𝐴 is 2 × 2 and it contains a 0, then det 𝐴 ∈ {±1}, which contradicts the previous item.

Lemma 17 (pivoting in MVMs). Let 𝐴 be a minimal violation matrix. Suppose 𝐴 has ≥ 3 rows.
Suppose we perform a real pivot in 𝐴, then delete the pivot row and column. Then the resulting
matrix 𝐴′ is also a minimal violation matrix.

Proof sketch.

• Let 𝐴″ denote matrix 𝐴 after the pivot, but before the pivot row and column are deleted.

• Since 𝐴 is not TU, Lemma 14 implies that 𝐴″ is not TU. Thus 𝐴′ is not TU by Lemma 8.

• Let 𝑇 ′ be a proper square submatrix of 𝐴′. Let 𝑇 ″ be the submatrix of 𝐴″ consisting of
𝑇 ′ plus the pivot row and the pivot column, and let 𝑇 be the corresponding submatrix of
𝐴 (defined by the same row and column indices as 𝑇 ″).

• 𝑇 is TU as a proper submatrix of 𝐴. Then Lemma 13 implies that 𝑇 ″ is TU. Thus 𝑇 ′ is
TU by Lemma 3.
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1.2 Matroid Definitions
Definition 18 (binary matroid). Let 𝐵 be a binary matrix, let 𝐴 = [𝐼 ∣ 𝐵], and let 𝐸 denote
the column index set of 𝐴. Let ℐ be all index subsets 𝑍 ⊆ 𝐸 such that the columns of 𝐴 indexed
by 𝑍 are independent over ℤ2. Then 𝑀 = (𝐸, ℐ) is called a binary matroid and 𝐵 is called its
(standard) representation matrix.

Definition 19 (regular matroid). Let 𝑀 be a binary matroid generated from a standard rep-
resentation matrix 𝐵. Suppose 𝐵 has a TU signing, i.e., there exists a rational matrix 𝐴 such
that:

• 𝐴 is a signed version of 𝐵, i.e., |𝐴| = 𝐵,

• 𝐴 is totally unimodular.

Then 𝑀 is called a regular matroid.

Lemma 20 (regularity is ignostic of representation).
add

1.3 𝑘-Separation and 𝑘-Connectivity
Definition 21 (𝑘-separation). Let 𝑀 be a binary matroid generated by a standard representa-

tion matrix 𝐵. Suppose that 𝐵 is partitioned as
𝑌1 𝑌2

𝑋1 𝐵1 𝐷2
𝑋2 𝐷1 𝐵2

where 𝑋1 ⊔𝑋2 is a partition

of the rows of 𝐵 and 𝑌1 ⊔ 𝑌2 is a partition of its columns. Let 𝑘 ∈ ℤ≥1 and suppose that

• |𝑋1 ∪ 𝑌1| ≥ 𝑘 and |𝑋2 ∪ 𝑌2| ≥ 𝑘,

• ℤ2-rank 𝐷1 + ℤ2-rank 𝐷2 ≤ 𝑘 − 1.

Then (𝑋1 ∪ 𝑌1, 𝑋2 ∪ 𝑌2) is called a (Tutte) 𝑘-separation of 𝐵 and 𝑀 .

Definition 22 (exact 𝑘-separation). A 𝑘-separation is called exact if the rank condition holds
with equality.

Definition 23 (𝑘-separability). We say that 𝐵 and 𝑀 are (exactly) (Tutte) 𝑘-separable if they
have an (exact) 𝑘-separation.

Definition 24 (𝑘-connectivity). For 𝑘 ≥ 2, 𝑀 and 𝐵 are (Tutte) 𝑘-connected if they have no
ℓ-separation for 1 ≤ ℓ < 𝑘. When 𝑀 and 𝐵 are 2-connected, they are also called connected.

1.4 Sums
1.4.1 1-Sums

Definition 25 (1-sum of matrices). Let 𝐵 be a matrix that can be represented as
𝑌1 𝑌2

𝑋1 𝐵1 0
𝑋2 0 𝐵2

Then we say that 𝐵1 and 𝐵2 are the two components of a 1-sum decomposition of 𝐵.
Conversely, a 1-sum composition with components 𝐵1 and 𝐵2 is the matrix 𝐵 above.
The expression 𝐵 = 𝐵1 ⊕1 𝐵2 means either process.
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Definition 26 (matroid 1-sum). Let 𝑀 be a binary matroid with a representation matrix 𝐵.
Suppose that 𝐵 can be partitioned as in Definition 25 with non-zero blocks 𝐵1 and 𝐵2. Then
the binary matroids 𝑀1 and 𝑀2 represented by 𝐵1 and 𝐵2, respectively, are the two components
of a 1-sum decomposition of 𝑀 .

Conversely, a 1-sum composition with components 𝑀1 and 𝑀2 is the matroid 𝑀 defined by
the corresponding representation matrix 𝐵.

The expression 𝑀 = 𝑀1 ⊕1 𝑀2 means either process.

Lemma 27 (1-sum is commutative).
add

Theorem 28 (1-sum of regular matroids is regular). Let 𝑀1 and 𝑀2 be regular matroids. Then
𝑀 = 𝑀1 ⊕1 𝑀2 is a regular matroid.

Conversely, if a regular matroid 𝑀 can be decomposed as a 1-sum 𝑀 = 𝑀1 ⊕1 𝑀2, then 𝑀1
and 𝑀2 are both regular.

Proof sketch.
extract into lemmas about TU matrices

Let 𝐵, 𝐵1, and 𝐵2 be the representation matrices of 𝑀 , 𝑀1, and 𝑀2, respectively.

• Converse direction. Let 𝐵′ be a TU signing of 𝐵. Let 𝐵′
1 and 𝐵′

2 be signings of 𝐵1 and
𝐵2, respectively, obtained from 𝐵. By Lemma 3, 𝐵′

1 and 𝐵′
2 are both TU, so 𝑀1 and 𝑀2

are both regular.

• Forward direction. Let 𝐵′
1 and 𝐵′

2 be TU signings of 𝐵1 and 𝐵2, respectively. Let 𝐵′ be
the corresponding signing of 𝐵. By Lemma 8, 𝐵′ is TU, so 𝑀 is regular.

Lemma 29 (left summand of regular 1-sum is regular).
add

Proof.

Lemma 30 (right summand of regular 1-sum is regular).
add

Proof.

1.4.2 2-Sums

Definition 31 (2-sum of matrices). Let 𝐵 be a matrix of the form
𝑌1 𝑌2

𝑋1 𝐴1 0
𝑋2 𝐷 𝐴2

Let 𝐵1 be

a matrix of the form
𝑌1

𝑋1 𝐴1
Unit 𝑥

Let 𝐵2 be a matrix of the form Unit 𝑌2
𝑋2 𝑦 𝐴2

Suppose that

ℤ2-rank 𝐷 = 1, 𝑥 ≠ 0, 𝑦 ≠ 0, 𝐷 = 𝑦 ⋅ 𝑥 (outer product).
Then we say that 𝐵1 and 𝐵2 are the two components of a 2-sum decomposition of 𝐵.
Conversely, a 2-sum composition with components 𝐵1 and 𝐵2 is the matrix 𝐵 above.
The expression 𝐵 = 𝐵1 ⊕2 𝐵2 means either process.
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Definition 32 (matroid 2-sum). Let 𝑀 be a binary matroid with a representation matrix 𝐵.
Suppose 𝐵, 𝐵1, and 𝐵2 satisfy the assumptions of Definition 31. Then the binary matroids 𝑀1
and 𝑀2 represented by 𝐵1 and 𝐵2, respectively, are the two components of a 2-sum decomposition
of 𝑀 .

Conversely, a 2-sum composition with components 𝑀1 and 𝑀2 is the matroid 𝑀 defined by
the corresponding representation matrix 𝐵.

The expression 𝑀 = 𝑀1 ⊕2 𝑀2 means either process.

Lemma 33 (2-sum of TU matrices is a TU matrix). Let 𝐵1 and 𝐵2 be TU matrices. Then
𝐵 = 𝐵1 ⊕2 𝐵2 is a TU matrix.

Proof sketch.
Let 𝐵′

1 and 𝐵′
2 be TU signings of 𝐵1 and 𝐵2, respectively. In particular, let 𝐴′

1, 𝑥′, 𝐴′
2, and

𝑦′ be the signed versions of 𝐴1, 𝑥, 𝐴2, and 𝑦, respectively. Let 𝐵′ be the signing of 𝐵 where
the blocks of 𝐴1 and 𝐴2 are signed as 𝐴′

1 and 𝐴′
2, respectively, and the block of 𝐷 is signed as

𝐷′ = 𝑦′ ⋅ 𝑥′ (outer product).
Note that [𝐴′

1/𝐷′] is TU by Lemma 10, as every row of 𝐷′ is either zero or a copy of 𝑥′.
Similarly, [𝐷′ ∣ 𝐴′

2] is TU by Corollary 11, as every column of 𝐷′ is either zero or a copy of 𝑦′.
Additionally, [𝐴′

1 ∣ 0] is TU by Corollary 11, and [0/𝐴′
2] is TU by Lemma 10.

prove lemma below, separate into statement about TU matrices
Lemma: Let 𝑇 be a square submatrix of 𝐵′. Then det 𝑇 ∈ {0, ±1}.
Proof: Induction on the size of 𝑇 . Base: If 𝑇 consists of only 1 element, then this element is

0 or ±1, so det 𝑇 ∈ {0, ±1}. Step: Let 𝑇 have size 𝑡 and suppose all square submatrices of 𝐵′ of
size ≤ 𝑡 − 1 are TU.

• Suppose 𝑇 contains no rows of 𝑋1. Then 𝑇 is a submatrix of [𝐷′ ∣ 𝐴′
2], so det 𝑇 ∈ {0, ±1}.

• Suppose 𝑇 contains no rows of 𝑋2. Then 𝑇 is a submatrix of [𝐴′
1 ∣ 0], so det 𝑇 ∈ {0, ±1}.

• Suppose 𝑇 contains no columns of 𝑌1. Then 𝑇 is a submatrix of [0/𝐴′
2], so det 𝑇 ∈ {0, ±1}.

• Suppose 𝑇 contains no columns of 𝑌2. Then 𝑇 is a submatrix of [𝐴′
1/𝐷′], so det 𝑇 ∈ {0, ±1}.

• Remaining case: 𝑇 contains rows of 𝑋1 and 𝑋2 and columns of 𝑌1 and 𝑌2.

• If 𝑇 is 2 × 2, then 𝑇 is TU. Indeed, all proper submatrices of 𝑇 are of size ≤ 1, which are
{0, ±1} entries of 𝐴′, and 𝑇 contains a zero entry (in the row of 𝑋2 and column of 𝑌2), so
it cannot be a minimal violation matrix by Lemma 16. Thus, assume 𝑇 has size ≥ 3.

• .
complete proof, see last paragraph of Lemma 11.2.1 in Truemper

Theorem 34 (2-sum of regular matroids is a regular matroid). Let 𝑀1 and 𝑀2 be regular
matroids. Then 𝑀 = 𝑀1 ⊕2 𝑀2 is a regular matroid.

Proof sketch. Let 𝐵, 𝐵1, and 𝐵2 be the representation matrices of 𝑀 , 𝑀1, and 𝑀2, respectively.
Apply Lemma 33.

Lemma 35 (left summand of regular 2-sum is regular).
add
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Lemma 36 (right summand of regular 2-sum is regular).
add

1.4.3 3-Sums
Definition 37 (3-sum of matrices).
add

Definition 38 (matroid 3-sum).
add

Theorem 39 (3-sum of regular matroids is regular).
add

Lemma 40 (left summand of regular 3-sum is regular).
add

Lemma 41 (right summand of regular 3-sum is regular).
add
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