Seymour

Ivan S and Martin Dvorak

December 19, 2024

Chapter 1

Code

1.1 TU Matrices

Definition 1 (TU matrix). A rational matrix is *totally unimodular (TU)* if its every subdeterminant (i.e., determinant of every square submatrix) is 0 or ± 1 .

Lemma 2 (entries of a TU matrix). If A is TU, then every entry of A is 0 or ± 1 .

Proof sketch. Every entry is a square submatrix of size 1, and therefore has determinant (and value) 0 or ± 1 . П

Lemma 3 (any submatrix of a TU matrix is TU)**.** *Let be a rational matrix that is TU and let be a submatrix of . Then is TU.*

Proof sketch. Any square submatrix of B is a submatrix of A, so its determinant is 0 or ± 1 . Thus, B is TU. □

Lemma 4 (transpose of TU is TU). Let A be a TU matrix. Then A^T is TU.

Proof sketch. A submatrix T of A^T is a transpose of a submatrix of A, so det $T \in \{0, \pm 1\}$. \Box

Lemma 5 (appending zero vector to TU)**.** *Let be a matrix. Let be a zero row. Then* $C = [A/a]$ *is TU exactly when* A *is.*

Proof sketch. Let T be a square submatrix of C , and suppose A is TU. If T contains a zero row, then det $T = 0$. Otherwise T is a submatrix of A, so det $T \in \{0, \pm 1\}$. For the other direction, because A is a submatrix of C , we can apply lemma 3. \Box

Lemma 6 (appending unit vector to TU)**.** *Let be a matrix. Let be a unit row. Then* $C = [A/a]$ *is TU exactly when* A *is.*

Proof sketch. Let T be a square submatrix of C, a[nd](#page-1-0) suppose A is TU. If T contains the ± 1 entry of the unit row, then $\det T$ equals the determinant of some submatrix of A times ± 1 , so $\det T \in \{0, \pm 1\}$. If T contains some entries of the unit row except the ± 1 , then $\det T = 0$. Otherwise T is a submatrix of A, so det $T \in \{0, \pm 1\}$. For the other direction, simply note that A is a submatrix of C , and use lemma 3. П

Lemma 7 (TUness with adjoint identity matrix). A is TU iff every basis matrix of [I | A] has $determinant \pm 1$.

Proof sketch. Gaussian elimination. Basis submatrix: its columns form a basis of all columns, its rows form a basis of all rows. \Box

Lemma 8 (block-diagonal matrix with TU blocks is TU)**.** *Let be a matrix of the form* A_1 0 $\overline{0}$ *where* A_1 *and* A_2 *are both TU. Then* A *is also TU.*

Proof sketch. Any square submatrix T of A has the form $\begin{array}{c|c} 1 & 0 \\ \hline 0 & T_2 \end{array}$ where T_1 and T_2 are submatrices of A_1 and A_2 , respectively.

- If T_1 is square, then T_2 is also square, and $\det T = \det T_1 \cdot \det T_2 \in \{0, \pm 1\}.$
- If T_1 has more rows than columns, then the rows of T containing T_1 are linearly dependent, so det $T=0$.
- Similar if T_1 has more columns than rows.

Lemma 9 (appending parallel element to TU)**.** *Let be a TU matrix. Let be some row of . Then* $C = [A/a]$ *is TU.*

Proof sketch. Let T be a square submatrix of C. If T contains the same row twice, then the rows are \mathbb{Z}_2 -dependent, so det $T = 0$. Otherwise T is a submatrix of A, so det $T \in \{0, \pm 1\}$. \Box

Lemma 10 (appending rows to TU)**.** *Let be a TU matrix. Let be a matrix whose every row is a row of A, a zero row, or a unit row. Then* $C = [A/B]$ *is TU.*

Proof sketch. Either repeatedly apply Lemmas 5, 6, and 9 or perform a similar case analysis directly. \Box

Corollary 11 (appending columns to TU)**.** *Let be a TU matrix. Let be a matrix whose every column is [a](#page-1-2) c[olu](#page-2-0)mn of* A , a zero column, [or](#page-1-1) a unit column. Then $C = [A | B]$ is TU.

Proof sketch. C^T is TU by Lemma 10 and construction, so C is TU by Lemma 4.

Definition 12 (\mathcal{F} -pivot). Let A be a matrix over a field \mathcal{F} with row index set X and column index set Y. Let A_{xy} be a nonzero element. The result of a $\mathcal{F}\text{-}pivot$ of A on the *pivot element* A_{xy} is the matrix A' over $\mathcal F$ with r[ow](#page-2-1) index set X' and column index set Y' de[fin](#page-1-3)ed as follows.

- For every $u \in X x$ and $w \in Y y$, let $A'_{uw} = A_{uw} + (A_{uy} \cdot A_{xw})/(-A_{xy})$.
- Let $A'_{xy} = -A_{xy}$, $X' = X x + y$, and $Y' = Y y + x$.

Lemma 13 (pivoting preserves TUness). Let A be a TU matrix and let A_{xy} be a nonzero element. Let A' be the matrix obtained by performing a real pivot in A on A_{xy} . Then A' is TU.

Proof sketch.

- By Lemma 7 A is TU iff every basis matrix of $[I | A]$ has determinant ± 1 . The same holds for A' and $[I | A']$.
- Determinants of the basis matrices are preserved under elementary row operations in $[I | A]$ correspondi[ng](#page-1-4) to the pivot in A, under scaling by ± 1 factors, and under column exchange, all of which together convert $[I | A]$ to $[I | A']$.

 \Box

 \Box

Lemma 14 (pivoting preserves TUness). Let A be a matrix and let A_{xy} be a nonzero element. Let A' be the matrix obtained by performing a real pivot in A on A_{xy} . If A' is TU, then A is *TU.*

Proof sketch. Reverse the row operations, scaling, and column exchange in the proof of Lemma 13. \Box

1.1.1 Minimal Violation Matrices

Definition 15 (minimal violation matrix). Let A be a rational $\{0, \pm 1\}$ matrix that is not [TU](#page-2-2) but all of whose proper submatrices are TU. Then A is called a *minimal violation matrix of total unimodularity (minimal violation matrix)*.

Lemma 16 (simple properties of MVMs)**.** *Let be a minimal violation matrix.*

- *is square.*
- det $A \notin \{0, \pm 1\}.$
- If A is 2×2 , then A does not contain a 0.

Proof sketch.

- If A is not square, then since all its proper submatrices are TU, A is TU, contradiction.
- If det $A \in \{0, \pm 1\}$, then all subdeterminants of A are 0 or ± 1 , so A is TU, contradiction.
- If A is 2×2 and it contains a 0, then det $A \in \{\pm 1\}$, which contradicts the previous item.

Lemma 17 (pivoting in MVMs). Let A be a minimal violation matrix. Suppose A has ≥ 3 rows. *Suppose we perform a real pivot in* A, then delete the pivot row and column. Then the resulting matrix A' is also a minimal violation matrix.

Proof sketch.

- Let A'' denote matrix A after the pivot, but before the pivot row and column are deleted.
- Since A is not TU, Lemma 14 implies that A'' is not TU. Thus A' is not TU by Lemma 8.
- Let T' be a proper square submatrix of A'. Let T'' be the submatrix of A'' consisting of T' plus the pivot row and the pivot column, and let T be the corresponding submatrix of A (defined by the same ro[w an](#page-3-0)d column indices as T'').
- T is TU as a proper submatrix of A. Then Lemma 13 implies that T'' is TU. Thus T' is TU by Lemma 3.

 \Box

1.2 Matroid Definitions

Definition 18 (binary matroid). Let B be a binary matrix, let $A = [I | B]$, and let E denote the column index set of A. Let \mathcal{I} be all index subsets $Z \subseteq E$ such that the columns of A indexed by Z are independent over \mathbb{Z}_2 . Then $M = (E, \mathcal{I})$ is called a *binary matroid* and B is called its *(standard) representation matrix*.

Definition 19 (regular matroid). Let M be a binary matroid generated from a standard representation matrix B . Suppose B has a TU signing, i.e., there exists a rational matrix A such that:

- A is a signed version of B, i.e., $|A| = B$,
- A is totally unimodular.

Then M is called a *regular matroid*.

Lemma 20 (regularity is ignostic of representation)**.** *add*

1.3 *k*-Separation and *k*-Connectivity

Definition 21 (k -separation). Let M be a binary matroid generated by a standard representa-

tion matrix B . Suppose that B is partitioned as Y_1 Y_2 $X_1 \mid B_1 \mid D_2$ $X_2 \mid D_1 \mid B_2$ where $X_1 \sqcup X_2$ is a partition

of the rows of B and $Y_1 \sqcup Y_2$ is a partition of its columns. Let $k \in \mathbb{Z}_{\geq 1}$ and suppose that

- $|X_1 \cup Y_1| \geq k$ and $|X_2 \cup Y_2| \geq k$,
- \mathbb{Z}_2 -rank $D_1 + \mathbb{Z}_2$ -rank $D_2 \leq k 1$.

Then $(X_1 \cup Y_1, X_2 \cup Y_2)$ is called a *(Tutte) k*-separation of *B* and *M*.

Definition 22 (exact k -separation). A k -separation is called *exact* if the rank condition holds with equality.

Definition 23 (*k*-separability). We say that B and M are *(exactly) (Tutte) k*-separable if they have an (exact) k -separation.

Definition 24 (*k*-connectivity). For $k \geq 2$, M and B are *(Tutte) k*-connected if they have no ℓ -separation for $1 \leq \ell < k$. When M and B are 2-connected, they are also called *connected*.

1.4 Sums

1.4.1 1**-Sums**

Definition 25 (1-sum of matrices). Let B be a matrix that can be represented as

 Y_1 Y_2 $X_1 \mid B_1 \mid 0$ X_2

Then we say that B_1 and B_2 are the two *components* of a 1*-sum decomposition* of \overline{B} . Conversely, a 1-sum *composition* with *components* B_1 and B_2 is the matrix B above. The expression $B = B_1 \oplus_1 B_2$ means either process.

Definition 26 (matroid 1-sum). Let M be a binary matroid with a representation matrix B . Suppose that B can be partitioned as in Definition 25 with non-zero blocks B_1 and B_2 . Then the binary matroids M_1 and M_2 represented by B_1 and B_2 , respectively, are the two *components* of a 1-sum decomposition of M.

Conversely, a 1-sum *composition* with *components* M_1 and M_2 is the matroid M defined by the corresponding representation matrix B .

The expression $M = M_1 \oplus_1 M_2$ means either pro[ces](#page-4-0)s.

Lemma 27 (1-sum is commutative)**.**

Theorem 28 (1-sum of regular matroids is regular). Let M_1 and M_2 be regular matroids. Then $M = M_1 \oplus_1 M_2$ is a regular matroid.

Conversely, if a regular matroid M can be decomposed as a 1-sum $M = M_1 \oplus_1 M_2$, then M_1 and M_2 are both regular.

Proof sketch.

extract into lemmas about TU matrices

Let B, B_1 , and B_2 be the representation matrices of M, M_1 , and M_2 , respectively.

- Converse direction. Let B' be a TU signing of B. Let B'_1 and B'_2 be signings of B_1 and B_2 , respectively, obtained from B. By Lemma 3, B'_1 and B'_2 are both TU, so M_1 and M_2 are both regular.
- Forward direction. Let B'_1 and B'_2 be TU signings of B_1 and B_2 , respectively. Let B' be the corresponding signing of B. By Lemma 8, B' is TU, so M is regular.

 \Box

 \Box

 \Box

Proof.

Lemma 30 (right summand of regular 1-sum is regular)**.**

Proof.

add

add

1.4.2 2**-Sums**

Definition 31 (2-sum of matrices). Let B be a matrix of the form Y_1 Y_2 $X_1 \begin{array}{|c|c|c|} \hline A_1 & 0 \\ \hline \end{array}$ $X_2 \begin{array}{|c|c|c|} \hline D & A_2 \ \hline \end{array}$ Let B_1 be a matrix of the form Y_1 X_1 | Let Unit $\mid x$ Let B_2 be a matrix of the form $X_2 \begin{array}{|c|c|c|c|} \hline \text{Unit} & Y_2 \\ \hline y & A_2 \end{array}$ Suppose that

 \mathbb{Z}_2 -rank $D = 1, x \neq 0, y \neq 0, D = y \cdot x$ (outer product).

Then we say that B_1 and B_2 are the two *components* of a 2-sum decomposition of B. Conversely, a 2-sum *composition* with *components* B_1 and B_2 is the matrix B above. The expression $B = B_1 \oplus_2 B_2$ means either process.

Definition 32 (matroid 2-sum). Let M be a binary matroid with a representation matrix B . Suppose B, B_1 , and B_2 satisfy the assumptions of Definition 31. Then the binary matroids M_1 and M_2 represented by B_1 and B_2 , respectively, are the two *components* of a 2*-sum decomposition* of M .

Conversely, a 2-sum *composition* with *components* M_1 and M_2 is the matroid M defined by the corresponding representation matrix B .

The expression $M = M_1 \oplus_2 M_2$ means either process.

Lemma 33 (2-sum of TU matrices is a TU matrix). Let B_1 and B_2 be TU matrices. Then $B = B_1 \oplus_2 B_2$ is a TU matrix.

Proof sketch.

• .

Let B'_1 and B'_2 be TU signings of B_1 and B_2 , respectively. In particular, let A'_1 , x', A'_2 , and y' be the signed versions of A_1 , x, A_2 , and y, respectively. Let B' be the signing of B where the blocks of A_1 and A_2 are signed as A'_1 and A'_2 , respectively, and the block of D is signed as $D' = y' \cdot x'$ (outer product).

Note that $[A'_1/D']$ is TU by Lemma 10, as every row of D' is either zero or a copy of x'. Similarly, $[D' | A'_2]$ is TU by Corollary 11, as every column of D' is either zero or a copy of y'. Additionally, $[A'_1 \mid 0]$ is TU by Corollary 11, and $[0/A'_2]$ is TU by Lemma 10.

prove lemma below, separate into statement about TU matrices

Lemma: Let T be a square submatr[ix](#page-2-4) [of](#page-2-1) B'. Then det $T \in \{0, \pm 1\}$.

Proof: Induction on the size of T. Ba[se:](#page-2-4) If T consists of only 1 elemen[t, t](#page-2-1)hen this element is 0 or ± 1 , so det $T \in \{0, \pm 1\}$. *Step:* Let T have size t and suppose all square submatrices of B' of size $\leq t-1$ are TU.

- Suppose T contains no rows of X_1 . Then T is a submatrix of $[D' | A'_2]$, so det $T \in \{0, \pm 1\}$.
- Suppose T contains no rows of X_2 . Then T is a submatrix of $[A'_1 \mid 0]$, so $\det T \in \{0, \pm 1\}$.
- Suppose T contains no columns of Y_1 . Then T is a submatrix of $[0/A'_2]$, so det $T \in \{0, \pm 1\}$.
- Suppose T contains no columns of Y_2 . Then T is a submatrix of $[A'_1/D']$, so det $T \in \{0, \pm 1\}$.
- Remaining case: T contains rows of X_1 and X_2 and columns of Y_1 and Y_2 .
- If T is 2×2 , then T is TU. Indeed, all proper submatrices of T are of size ≤ 1 , which are $\{0, \pm 1\}$ entries of A', and T contains a zero entry (in the row of X_2 and column of Y_2), so it cannot be a minimal violation matrix by Lemma 16. Thus, assume T has size ≥ 3 .
	- complete proof, see last paragraph of Lemma 11.2.1 in Truemper

 \Box

Theorem 34 (2-sum of regular matroids is a regular matroid). Let M_1 and M_2 be regular *matroids. Then* $M = M_1 \oplus_2 M_2$ *is a regular matroid.*

Proof sketch. Let B, B_1 , and B_2 be the representation matrices of M, M_1 , and M_2 , respectively. Apply Lemma 33. \Box

Lemma 35 (left summand of regular 2-sum is regular)**.** *add*

Lemma 36 (right summand of regular 2-sum is regular).

add

1.4.3 3**-Sums**

Definition 37 (3-sum of matrices)**.** add

Definition 38 (matroid 3-sum)**.** add

Theorem 39 (3-sum of regular matroids is regular)**.** *add*

Lemma 40 (left summand of regular 3-sum is regular)**.** *add*

Lemma 41 (right summand of regular 3-sum is regular)**.** *add*