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Chapter 1

Code

1.1 TU Matrices

Definition 1 (TU matrix). A rational matrix is totally unimodular (TU) if its every subdeter-
minant (i.e., determinant of every square submatrix) is 0 or +1.

Lemma 2 (entries of a TU matrix). If A is TU, then every entry of A is 0 or +1.

Proof sketch. Every entry is a square submatrix of size 1, and therefore has determinant (and
value) 0 or +1. O

Lemma 3 (any submatrix of a TU matrix is TU). Let A be a rational matriz that is TU and
let B be a submatriz of A. Then B is TU.

Proof sketch. Any square submatrix of B is a submatrix of A, so its determinant is 0 or +1.
Thus, B is TU. O

Lemma 4 (transpose of TU is TU). Let A be a TU matriz. Then AT is TU.
Proof sketch. A submatrix T of AT is a transpose of a submatrix of A, so detT € {0, +1}. O

Lemma 5 (appending zero vector to TU). Let A be a matriz. Let a be a zero row. Then
C =[A/a] is TU ezactly when A is.

Proof sketch. Let T be a square submatrix of C, and suppose A is TU. If T contains a zero row,
then detT" = 0. Otherwise T is a submatrix of A, so detT € {0,£1}. For the other direction,
because A is a submatrix of C, we can apply lemma 3. O

Lemma 6 (appending unit vector to TU). Let A be a matriz. Let a be a unit row. Then
C =[A/a] is TU exactly when A is.

Proof sketch. Let T be a square submatrix of C, and suppose A is TU. If T' contains the +1
entry of the unit row, then detT equals the determinant of some submatrix of A times +1, so
detT € {0,+£1}. If T contains some entries of the unit row except the +1, then detT = 0.
Otherwise T is a submatrix of A, so detT € {0,41}. For the other direction, simply note that
A is a submatrix of C', and use lemma 3. O

Lemma 7 (TUness with adjoint identity matrix). A is TU iff every basis matriz of [I | A] has
determinant +1.



Proof sketch. Gaussian elimination. Basis submatrix: its columns form a basis of all columns,
its rows form a basis of all rows. O

Lemma 8 (block-diagonal matrix with TU blocks is TU). Let A be a matriz of the form

/(1)1 : where A, and Ay are both TU. Then A is also TU.
2
Proof sketch. Any square submatrix 7" of A has the form 1& 7(3 where T; and T, are sub-
2

matrices of A; and A,, respectively.
o If T} is square, then T} is also square, and det T = det T} - det T, € {0, +1}.

o If T} has more rows than columns, then the rows of 7" containing 7} are linearly dependent,
so detT = 0.

o Similar if 7} has more columns than rows.
O

Lemma 9 (appending parallel element to TU). Let A be a TU matriz. Let a be some row of A.
Then C = [A/a) is TU.

Proof sketch. Let T be a square submatrix of C. If T' contains the same row twice, then the
rows are Z,-dependent, so det T = 0. Otherwise T is a submatrix of A, so detT € {0,+1}. O

Lemma 10 (appending rows to TU). Let A be a TU matriz. Let B be a matriz whose every
row is a row of A, a zero row, or a unit row. Then C =[A/B] is TU.

Proof sketch. Either repeatedly apply Lemmas 5, 6, and 9 or perform a similar case analysis
directly. O

Corollary 11 (appending columns to TU). Let A be a TU matriz. Let B be a matriz whose
every column is a column of A, a zero column, or a unit column. Then C =[A | B] is TU.

Proof sketch. CT is TU by Lemma 10 and construction, so C'is TU by Lemma 4. O

Definition 12 (F-pivot). Let A be a matrix over a field F with row index set X and column
index set Y. Let A, be a nonzero element. The result of a F-pivot of A on the pivot element
A, is the matrix A" over F with row index set X" and column index set Y’ defined as follows.

e Foreveryue X —randw €Y —y, let A, = A, + (A, - A)/(—AL,).
o Let A}y =-A,, X' =X—-z+y,andY' =Y —y+u.

Ty
Lemma 13 (pivoting preserves TUness). Let A be a TU matriz and let A,,, be a nonzero element.
Let A’ be the matriz obtained by performing a real pivot in A on Agy- Then A’ is TU.
Proof sketch.

o By Lemma 7 A is TU iff every basis matrix of [I | A] has determinant 1. The same holds
for A" and [I | A’].

o Determinants of the basis matrices are preserved under elementary row operations in [I | A]
corresponding to the pivot in A, under scaling by 41 factors, and under column exchange,
all of which together convert [I | A] to [I | A'].



O

Lemma 14 (pivoting preserves TUness). Let A be a matriz and let A,, be a nonzero element.
Let A’ be the matriz obtained by performing a real pivot in A on A,,. If A" is TU, then A is
TU.

Proof sketch. Reverse the row operations, scaling, and column exchange in the proof of Lemma 13.

O

1.1.1 Minimal Violation Matrices

Definition 15 (minimal violation matrix). Let A be a rational {0, 41} matrix that is not TU
but all of whose proper submatrices are TU. Then A is called a minimal violation matrixz of total
unimodularity (minimal violation matriz).

Lemma 16 (simple properties of MVMs). Let A be a minimal violation matriz.
o A is square.
o det A ¢ {0,£1}.
o If Ais2x 2, then A does not contain a 0.
Proof sketch.
e If A is not square, then since all its proper submatrices are TU, A is TU, contradiction.
o If det A € {0,41}, then all subdeterminants of A are 0 or 1, so A is TU, contradiction.
o If Ais 2 x 2 and it contains a 0, then det A € {£1}, which contradicts the previous item.
O

Lemma 17 (pivoting in MVMs). Let A be a minimal violation matriz. Suppose A has > 3 rows.
Suppose we perform a real pivot in A, then delete the pivot row and column. Then the resulting
matriz A’ is also a minimal violation matriz.

Proof sketch.
e Let A” denote matrix A after the pivot, but before the pivot row and column are deleted.
e Since A is not TU, Lemma 14 implies that A” is not TU. Thus A’ is not TU by Lemma 8.

e Let T” be a proper square submatrix of A’. Let T” be the submatrix of A” consisting of
T’ plus the pivot row and the pivot column, and let T be the corresponding submatrix of
A (defined by the same row and column indices as 7).

e T is TU as a proper submatrix of A. Then Lemma 13 implies that 7" is TU. Thus T” is
TU by Lemma 3.

O



1.2 Matroid Definitions

Definition 18 (binary matroid). Let B be a binary matrix, let A = [I | B], and let E denote
the column index set of A. Let J be all index subsets Z C E such that the columns of A indexed
by Z are independent over Z,. Then M = (E,J) is called a binary matroid and B is called its
(standard) representation matric.

Definition 19 (regular matroid). Let M be a binary matroid generated from a standard rep-
resentation matrix B. Suppose B has a TU signing, i.e., there exists a rational matrix A such
that:

o A s a signed version of B, i.e., |A| = B,
e A is totally unimodular.
Then M is called a reqular matroid.

Lemma 20 (regularity is ignostic of representation).

1.3 k-Separation and k-Connectivity

Definition 21 (k-separation). Let M be a binary matroid generated by a standard representa-

v, Y,
tion matrix B. Suppose that B is partitioned as X; | B; | D, where X, UX, is a partition
X, | Dy | By

of the rows of B and Y L'Y; is a partition of its columns. Let k& € Z.; and suppose that
o [ XUY | >kand|X,UY,| >k,
o Zyrank D; + Zy-rank Dy, < k—1.

Then (X; UY;, X, UY)) is called a (Tutte) k-separation of B and M.

Definition 22 (exact k-separation). A k-separation is called ezact if the rank condition holds
with equality.

Definition 23 (k-separability). We say that B and M are (exactly) (Tutte) k-separable if they
have an (exact) k-separation.

Definition 24 (k-connectivity). For k > 2, M and B are (Tutte) k-connected if they have no
{-separation for 1 < £ < k. When M and B are 2-connected, they are also called connected.

1.4 Sums
1.4.1 1-Sums

i, Y
Definition 25 (1-sum of matrices). Let B be a matrix that can be representedas X; | By | 0

Then we say that B, and B, are the two components of a 1-sum decomposition of B.
Conversely, a 1-sum composition with components B, and B, is the matrix B above.
The expression B = B; @; B, means either process.



Definition 26 (matroid 1-sum). Let M be a binary matroid with a representation matrix B.
Suppose that B can be partitioned as in Definition 25 with non-zero blocks B; and By. Then
the binary matroids M; and M, represented by B; and B,, respectively, are the two components
of a 1-sum decomposition of M.

Conversely, a 1-sum composition with components M, and M, is the matroid M defined by
the corresponding representation matrix B.

The expression M = M; &; M, means either process.

Lemma 27 (1-sum is commutative).

Theorem 28 (1-sum of regular matroids is regular). Let M; and M, be reqular matroids. Then
M = M, &, M, is a reqular matroid.

Conversely, if a reqular matroid M can be decomposed as a 1-sum M = M, &, M,, then M,
and My are both regular.

Proof sketch.

Let B, By, and B, be the representation matrices of M, M, and M,, respectively.

o Converse direction. Let B” be a TU signing of B. Let B] and Bj be signings of B; and
B,, respectively, obtained from B. By Lemma 3, B] and B) are both TU, so M; and M,
are both regular.

o Forward direction. Let Bf and B be TU signings of B; and B,, respectively. Let B’ be
the corresponding signing of B. By Lemma 8, B’ is TU, so M is regular.

O

Lemma 29 (left summand of regular 1-sum is regular).

v
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O

Lemma 30 (right summand of regular 1-sum is regular).

v
S
s,
O

1.4.2 2-Sums

Y, Y
Definition 31 (2-sum of matrices). Let B be a matrix of the form X; | A; | 0 |Let By be
X, [D [ 4
Y Unit Y-
a matrix of the form X 14 be a matrix of the form 2 Suppose that
oo PR X, PP

Zyrank D=1, # 0,y # 0, D =y -z (outer product).
Then we say that B; and B, are the two components of a 2-sum decomposition of B.
Conversely, a 2-sum composition with components B; and B, is the matrix B above.
The expression B = B, @, B, means either process.



Definition 32 (matroid 2-sum). Let M be a binary matroid with a representation matrix B.
Suppose B, By, and B, satisfy the assumptions of Definition 31. Then the binary matroids M;
and M, represented by B; and B,, respectively, are the two components of a 2-sum decomposition
of M.

Conversely, a 2-sum composition with components M, and M, is the matroid M defined by
the corresponding representation matrix B.

The expression M = M; &, M, means either process.

Lemma 33 (2-sum of TU matrices is a TU matrix). Let B; and B, be TU matrices. Then
B = B, @&y By is a TU matrix.

Proof sketch.

Let Bf and Bj be TU signings of B; and B,, respectively. In particular, let A7, z’, A}, and
y’ be the signed versions of A;, x, Ay, and y, respectively. Let B’ be the signing of B where
the blocks of A; and A, are signed as A7 and Aj, respectively, and the block of D is signed as
D’ =y’ -2’ (outer product).

Note that [A]/D’] is TU by Lemma 10, as every row of D’ is either zero or a copy of z’.
Similarly, [D’ | Aj] is TU by Corollary 11, as every column of D’ is either zero or a copy of y’.
Additionally, [A] | 0] is TU by Corollary 11, and [0/A%] is TU by Lemma 10.

Lemma: Let T be a square submatrix of B’. Then detT € {0, +1}.

Proof: Induction on the size of T. Base: If T' consists of only 1 element, then this element is
0or 41, so det T € {0,41}. Step: Let T have size t and suppose all square submatrices of B’ of
size <t —1 are TU.

o Suppose T' contains no rows of X;. Then T is a submatrix of [D’ | A3], so det T € {0, +1}.
o Suppose T contains no rows of X,. Then T is a submatrix of [4] | 0], so det T € {0, +1}.
o Suppose T contains no columns of Y;. Then T is a submatrix of [0/A45], so det T € {0, +1}.
o Suppose T contains no columns of Y,. Then T is a submatrix of [A]/D’], sodet T € {0, £1}.
o Remaining case: T contains rows of X; and X, and columns of Y] and Y5.

e If Tis 2 x 2, then T is TU. Indeed, all proper submatrices of T are of size < 1, which are
{0, 41} entries of A’, and T contains a zero entry (in the row of X, and column of Y5), so
it cannot be a minimal violation matrix by Lemma 16. Thus, assume 7" has size > 3.

O
Theorem 34 (2-sum of regular matroids is a regular matroid). Let M; and M, be regular

matroids. Then M = M, @, M, is a regular matroid.

Proof sketch. Let B, B;, and B, be the representation matrices of M, M;, and M,, respectively.
Apply Lemma 33. O

Lemma 35 (left summand of regular 2-sum is regular).
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Lemma 36 (right summand of regular 2-sum is regular).
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Definition 37 (3-sum of matrices).

Definition 38 (matroid 3-sum).

Theorem 39 (3-sum of regular matroids is regular).

Lemma 40 (left summand of regular 3-sum is regular).

Lemma 41 (right summand of regular 3-sum is regular).

\] ‘
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